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Abstract

The Parrondo Paradox is a counterintuitive probabilistic phenomenon in situations of repeated

decision making with uncertainty. Simply stated, it is that given two games, each with a higher

probability of losing than winning, it is possible to construct a winning strategy by playing the

games alternately. The best-known and analyzed examples are somewhat involved, and may not be

relevant to practical situations of repeated decision making, e.g. casino games and investment in

securities markets. Here, we construct a very simply stated and analyzed example of the Parrondo

Paradox, using a model of stylized Blackjack-type betting that is well-known in the gambling

literature.
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1 Introduction

The Cambridge Dictionary online defines a paradox to be “a situation or statement which seems

impossible or is difficult to understand because it contains two opposite facts or characteristics”.

Some well-known paradoxes are statistical phenomena. For example, Lindley’s Paradox of statistical

inference occurs when a classical test of the null hypothesis strongly rejects it, while a Bayesian

posterior odds ratio highly favors it. [10] Of course, the phenomenon can be understood; it is

just difficult to do so without further analysis. Another example is Parrondo’s Paradox, posed as

follows:

But can two losing gambling games be set up such that, when they are played one after

the other, they becoming winning? The answer is yes. [5]

Key, Klosek, and Abbott [7] demonstrate this in situations where play switches from one simple

game to another whenever the total fortune is divisible by an integer determined in advance. They

generalize this to incorporate alternative switching rules, including the possibility of switching

plays on the result of a coin toss. Di Crescenzo [2] develops a Parrondo Paradox in the reliability

of chained components, by exploiting the fact that the product of mixtures of survival functions

stochastically dominates the product of the component survival functions. Berresford and Rockett

[1] contains a nice exposition of the earlier Parrondo Paradox examples, while Ethier and Lee [4]

devise a framework for generalizing and analyzing the earlier examples. Here, we demonstrate

that a Parrondo Paradox may arise in a simple model of Blackjack-type betting, which has been

discussed by Ed Thorp [11], the famous inventor of card-counting Blackjack strategies. The required

switching rules are also in accord with reality – they are the two most common ways of implementing

the oft-advocated principle of diversification.
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2 “Blackjack”-type Betting

The popular stylized model of “Blackjack” betting, discussed by Thorp [11, chap.9], MacLean,

et.al. [8, p. 1575-1577] and others is now described. The bettor chooses a constant fraction f of

her table fortune to bet on each (Bernoulli) play, having a gross return per dollar invested equal

to 1 + f with probability π > 1/2, or 1 − f with probability 1 − π. It is assumed that the bet is

favorable, i.e. π > 1/2, so the bet has a positive “edge” (2π − 1) and positive expected net return

(2π − 1)f per play. Hence by what is popularly referred to as “Arrow’s Theorem”, any risk-averse

(i.e. expected strictly concave utility of return) bettor will want to bet some fraction of fortune

f > 0.

For example, suppose a person starts with F0 = $10, 000 and chooses to bet f = 5% on each

play. So he bets 10, 000f = $500 on the first play. If he wins, he will have 10, 000(1.05) =

10, 500 available for the next play. He then bets 10, 500f = 525. If he wins again, he will have

10, 500(1.05) = $11, 025, but if he loses, he will have 10, 500(0.95) = 9975. These Bernoulli trials

continue.

MacLean,et.al. (op.cit., p. 1576) report the well-known finding that successful “card counting”

Blackjack strategy can result in a favorable edge, e.g. see Thorp (op.cit.), and that “an approx-

imation that will provide us insight into the long-run behavior of a player’s fortune is to simply

assume that the game is a Bernoulli trial with a probability of success π = .51 and probability of

loss 1 − π = .49.”

The bettor’s fortune after n plays, denoted Fn, will be

Fn = F0[(1 + f)w(1− f)n−w]

= F0elog[(1+f)w(1−f)n−w]
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= F0ew log(1+f)+(n−w) log(1−f)

= F0e[ w
n

log(1+f)+n−w
n

log(1−f)]n(1)

where w is the binomially distributed number of winning bets. The bettor’s fortune Fn is the

product of n i.i.d. random variables, so its expected value after n plays is the compounded value

of its expected value per play, i.e.

E[Fn] = F0[π(1 + f) + (1− π)(1− f)]n.(2)

With π = 51% and f = 5%, E[Fn] = 1.001nF0, so after, say, n = 1000 repeated plays, the expected

value of the fortune is 2.717F0. But this statistic is extremely misleading. The fortune F1000 is

extremely positively skewed. Too see this, recall that the binomially distributed number of wins w

is approximately normal when π is close to 0.5 and n is suitably large. The last line of (1) then

shows that Fn is approximately lognormal, and thus positively skewed. As such, its expected value

is atypically high, much higher than the lower median. In fact, Ethier [3] shows that for suitably

large n in many i.i.d. processes (including this one), a reasonable approximation to the median

wealth is made by using the expected log gross return per play as an asymptotic exponential growth

factor for the median. The approximation is

Median[Fn] ≈ F0e[π log(1+f)+(1−π) log(1−f)]n

= F0e[−.00025]1000 = 0.778F0.(3)

that is, the approximate median outcome is a loss of around 22% of his initial stake. Because the

median outcome is a loss of fortune, there is a higher probability of losing income in the repeated

game than in winning income. This is quite disturbing, and illustrates both the risk of overly

aggressive betting in a favorable game and the spectacular failure of the expected value (172%

gain) as a measure of central tendency in a highly skewed distribution of outcomes.
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An alternative confirmation of this is enabled by simulating values of Fn on a computer spread-

sheet. Its random number generator may be used to simulate the 51% biased coin toss. Each time

a “head” is tossed, multiply Fn−1 by 1.05. If a “tail” is tossed, multiply Fn−1 by 0.95. Starting

with F0 = 10, 000 and doing this for 1000 simulated tosses results in a simulated value for F1000.

Figure 1 depicts a histogram from 234 simulated values of F1000, illustrating the positive skewness,

and showing that the resulting simulated median is far lower than the population expected value

near 27120. Of course, there is simulation error in the simulated value for the median, but the

cumulated histogram shows that the simulated median is close to the value calculated in (3).

Insert Figure 1 Near Here

Even without the results of this simulation, readers should not worry about the accuracy of

the approximation (3). To see why, note that the median number of wins is (the closest integer

to) nπ = 510, and that (1) is a monotone increasing transformation g of the number of wins w.

Because Median[g(w)] = g[Median[w]] for any g that is monotone increasing, (1) implies that

Median[Fn] = F0e[ nπ
n

log(1+f)+n−nπ
n

log(1−f)]n

= F0e[−.00025]1000 = 0.778F0(4)

showing that the approximation (3) for i.i.d. plays is exact in our biased coin-toss special case. In

other i.i.d. cases, Ethier (op.cit.) shows that an even more accurate approximation incorporates

the degree of skewness in the log gross return per play, but this refinement was obviously not needed

here.
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3 Diversification Mechanisms Producing a Parrondo Paradox

Now suppose the bettor plays two identical games alternately. He diversifies, placing half his funds,

i.e. $5000, in each game. He then alternates play between the two, and lets the funds “ride” in

each game. His total fortune after n plays of both games (determined by 2n Bernoulli trials) is:

Fn(Diversified Ride) = 1
2F0[(1 + f)w1(1 − f)w1−n] + 1

2F0[(1 + f)w2(1− f)w2−n](5)

Because π = .51 is close to half, the binomially distributed number of wins is approximately

normally distributed, and using the last line in (1), we see that the sum of two independent log

normal distributions may be used to approximate the distribution of (5). Unfortunately, that dis-

tribution does not have a closed form. So the aforementioned spreadsheet simulation was modified

to simulate values of (5). Just split F0 = 10, 000 in half and perform the simulation as above, to

produce a simulated value of the first term in (5). Do the same thing to produce a simulated value

of the second term of (5), and then just add the two results to produce a simulated value of (5).

To reduce simulation error, I did this 10, 000 times, and found the simulated median

Median[Fn(Diversified Ride)] ≈ 1.2 ∗ F0.(6)

Summarizing, we found that repeated play of the single game resulted in a median loss of around

22% of the initial stake, while merely splitting the initial stake between two such identical games

resulted in a median gain of around 20%! The outcome after repeated play of either game is a

higher probability of losing money than winning it. But splitting the initial stake between two

such games, and playing them alternately in the same way that the single game was played, (that

is, betting f = 5% of the income at risk in each game) results in a higher probability of winning

income than losing it. This is a Parrondo Paradox.
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The probabilistic mechanism underlying this result is simple. When only one game is played,

the possible outcomes of the first play are just a gain of 5% with 51% probability or a loss of

5% with 49% probability. But when the money is split between the two games, there are three

possible outcomes of the first play of both: a gain of 5% from (5000 ∗ 1.05 + 5000 ∗ 1.05) with

51%2 = 26.01% probability , a loss of 5% with probability 49%2 = 24.01%, and breaking even (from

5000 ∗ 1.05+ 5000 ∗ 0.95 = 10, 000) with the complementary probability 49.98% (from 2 ∗ .51 ∗ .49).

The nearly even odds of breaking even lowers the volatility of the first play, while leaving the

expected value of the first play unchanged. This mechanism works to raise the median of (5).

But wait: it is possible to do even better. Suppose the bettor splits his initial stake equally

between two identical and independently run “Blackjack”games, but now commits to maintaining

the 50-50 split of funds over the course of play. That is, he again starts with F0 = $10000, putting

$5000 to work in one game and the other $5000 to work in the other game. He then executes one

play of the first game, and then one play of the second game. If he wins in both games, he will have

5000(1.05)+5000(1.05) = 10500. He will allocate half ($5250) to each game before alternating play

again. That is, the bettor lets the winnings ride in both games, as before. If instead he lost in both

games, he would have 2 ∗ 5000(0.95) = 9500, and would thus allocate $4750 to each game before

alternating play again (that is, let the losings ride in both games, as before). But if instead he wins

in one game while losing in the other, he would have 5000(1.05)+5000(0.95) = 5250+4750 = 10000,

and would need to reallocate 250 from the winning game to the losing game, in order to maintain

the 50% allocation weight in each game. This need to reallocate funds from the better performing

game into the worse performing game will continue throughout play, whenever he wins in one while

losing in the other.
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The expected value of the fortune Fn after n plays of this two-game rebalanced strategy is

E[Fn(Rebalanced Diversification)] = F0[π2(1 + f) + (1 − π)2(1 − f) + 2π(1− π)(1)]n

= F0(1.001)1000 = 2.717F0(7)

which is the exact same, large expected gain as in the single (losing) game (2). But the median

value will be radically different. To see this, compute the expected log utility of gross return per

play to make the approximation

Median[Fn] ≈ F0e[π2 log(1+f)+(1−π)2 log(1−f)+2∗π(1−π) log(1)](8)

= F0e[.0003748∗1000] = 1.45F0(9)

So rather than suffering a median loss of around 22% after 1000 plays of a single game, his

alternating play of two identical games results in a median gain of approximately 45%, as long as

he continuously keeps his fortune split equally between the two games. This is substantially better

than the 20% median gain achieved from the Diversified Ride.

4 Discussion

One might question whether a gambler could implement strategies like these in actual casino games.

But one should not doubt that an investor could. The single game is equivalent to the binomial

tree model of stock price evolution, which is used in standard undergraduate finance textbooks

(e.g. see Hull [6, Chap.11]). Specifically, it is a model of a stock that either goes up or down

by the same percentage each period (here, 5%) with complementary probabilities (51% vs. 49%),

and has a positive expected net return per period (here, 10 basis points). The Diversified Ride

strategy is equivalent to buying and holding an (initially) equally value-weighted portfolio of two
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uncorrelated (but otherwise identical) stocks. The superior Rebalanced Diversification strategy is

an equally value-weighted, continuously rebalanced portfolio of the two. This provides a spectacular

demonstration of the value that both buy-and-hold and continuously rebalanced diversification

strategies can have for investors.

It is interesting to examine the special case of someone who wants to maximize the long-

run median gain. Using the Ethier (op.cit.) approximation, one will want to find the value of

f that maximizes the expected log utility of return. This is also dubbed the “log-optimal” or

“Kelly” criterion [see MacLean, et.al.(op.cit.)]. In the single game with outcome (1), this will be

argmaxf π log(1 + f) + (1−π) log(1− f) = 2π − 1. This is f = 2% rather than 5%, and will result

in a positive expected log gross return of 0.0002. As such, the single game will have a median

gain, rather than the loss associated with f = 5%. It is easy to show that the log-optimal bet in

a favorable game (i.e. π > 1/2) will always achieve a positive expected log gross return and hence

have a median gain. So that bettor cannot be the source of a Parrondo Paradox.

Finally, while one could consider policies with time-varying values of f , it is not hard to show

that in i.i.d. environments, a bettor wanting to maximize expected log utility will not gain anything

by doing so. Hence when using the Kelly criterion, there is no loss in generality in assuming that

f is fixed across time.

5 Conclusion

The “Parrondo Paradox” that two losing games can be played in a way to produce a winning

outcome is not just a probabilistic curiosity. A simplified model of Blackjack, used for analytic

purposes by Ed Thorp (the famous inventor of card-counting Blackjack technique) and other an-
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alysts, was used to produce a Parrondo Paradox. Moreover, our demonstration of this used very

elementary methods, including simulations that can be quickly performed by those with only basic

expertise in the use of computer spreadsheets, in contrast to the more complex analyses of other

Parrondo Paradoxes that abound in the literature. Those wishing to extend the conceptual frame-

work used here should see Maslov and Zhang [9],who studied investment in an asset whose median

price drifted downward over time. They constructed a rebalanced portfolio of that asset and cash,

with median portfolio value drifting upward over time.
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F 1000 Frequency Cumulative %
2500 55 24%
5000 31 37%
7780 33 51%

10000 11 56%
12500 10 60%
15000 14 66%
17500 13 71%
20000 5 74%
22500 5 76%
25000 4 77%
27170 5 79%
More 48 100%
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FIGURE 1: Histogram from 234 
Simulations of F1000, starting with 
F0 = 10,000.    
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