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Articles A Test for Randomness
The randomness of a data sequence or series of trials is often taken for granted, but how do we know 
that a given sequence really is random? As I explained in previous articles, 'random' means that 
outcomes are unbiased and independent. In the second probability tutorial I described a simple way in 
which we can test for independence. In this article I'll introduce another, more sophisticated test which 
can be applied to any set of data, even when nothing is known about where it comes from. The test 
works purely on the order of the observations.
Significance Tests
Before describing the test and how to apply it, a word about the logic of this and similar tests. This is 
important so that you know how to properly interpret the results.
The basic idea is pretty simple and intuitive; we assume that the data sequence is random, perform the 
test, and if the result of the test would only occur a small percentage of the time if the data really was
random, the result is said to be significant. The assumption that the data is random is called the null 
hypothesis, and is what the research is attempting to disprove. 
There are 'levels' of significance which correspond to the percentage. For example, suppose that you 
suspect that a Roulette wheel is biased and that a particular sector is hitting more often than it should. 
Your null hypothesis is:

 'The wheel is unbiased and this sector will hit as often as any other'. 
You then run an experiment (record spins), and summarize the data in the form of a statistic. If this 
statistic shows that your results would only occur 1% of the time if the null hypothesis was true (a fair 
wheel), then the result is declared significant at the 1% level. 
Now, it's important to understand that this does not necessarily mean that we can deny our assumption 
that the wheel is fair. A word of caution is in order:
All we can say is that either something unusual has happened (probability 1 in 100), or  our 
assumption of randomness is false.
Of course, if you did such an experiment enough times then you are going to get a 'significant' result 
occasionally, but in that case it wouldn't really be significant in the sense that you were hoping for.
Significance tests like this are for situations where we don't really understand, in any theoretical sense, 
what's going on. A science like physics is 'theoretical' in that there are laws, such as the principles of 
mechanics, which we can apply to any physical bodies and deduce consequences because the 
principles are invariable. On the other hand, in agriculture (significance tests were invented for farmers), 
medicine or psychology, there is very little deep theoretical knowledge.
Scientists usually don't understand very well why various drugs or medicines are effective, although 
they can tell, empirically, that some treatments are better than others. Significance tests are helpful for 
testing new treatments and can also help in finding out whether different factors are associated or 
correlated with each other.
The Runs Test
The Runs Test is used to test the independence of a set of data where the order in which the data was 
collected is preserved. This is consistent with the idea that independence is related to the regularity of 
outcomes; the more regularity there is in a set of data, the less the likelihood that it's independent. For 
example, which of the following sequences of R/B looks the most random?

1. R R R R B B B B
2. R B B R R B R B
3. R B R B R B R B

Most would agree that it's sequence 2; the others just look too regular. In the context of a data 
sequence, a run is a sequence of values (or labels, such as 'R', 'B') which is isolated by other 
sequences with different values or labels. For example, the following sequence of odd/even outcomes 
consists of 9 runs:
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The runs test only applies to binomial data, meaning two outcomes. However, this isn't as restrictive as 
it first appears, because if there are more than two classes, you can combine some into one class. For 
example, for dozen or column outcomes, there are 3 classes, but combining any 2 of them reduces the 
data to binomial. E.g.:

D1 D2D2 D3 D1 D3 D1D1 D2D2 
isn't binomial data, but if we combine dozen 2 and dozen 3 into one class (call it 'D'), then we get:

D1 DDD D1 D D1D1 DD
which is binomial, and there are 6 runs. 
So far I've only been using categorical data, that is, data which has been put into a category or group 
such as red/black, or a dozen. But the runs test can also be used on numerical data. Of course, the 
numbers should have some meaningful interpretation, and it's up to you where they come from. A 
couple of suggestions:

• The number of 'gaps' between hits for a particular bet. E.g., you record spins and count the 
number of spins which occur between hits of street 4-6. They might be: 7, 15, 4, 1, 29, 8, 12, 17. 
That means you had to wait 7 spins before street 4-6 first hit, then 15 spins before it hit again, 4 
spins before it hit again, and so on.

• The distance, counting clockwise or anticlockwise, between successive pockets on the wheel 
where the ball lands. E.g. the first number to hit is 5 and the 2nd number is 14. Counting 
clockwise from 5 to 14, there are 6 pockets, so the first number in your sequence is 6. The next 
pocket the ball lands in is 36. Again counting clockwise from 14, there are 25 pockets between it 
and 36, so the next number in the sequence is 25. 

Ok, so we have our data sequence where the order of data elements is preserved, but the data must be 
binomial to apply the runs test. That means we should be able to allocate each numerical data element 
to one of two possible classes — how do we do that?
We have two options. 
Option 1. Find the mean or median of the data set. If any item of data is above the mean or median, we 
give it a  sign, if it's below the mean or median, it gets a  sign. Any datum which falls exactly on 
the mean or median is ignored. Like this:

Option 2. Compare successive values of the sequence. If the next item of data is higher than the 
previous item, it gets a  sign. If it's lower, it gets a  sign. If successive items have the same 
numerical value, we skip that item and move to the next one. The plot below illustrates this scenario:
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Notice that the shape of the plots are identical because the same data points were plotted in both 
cases, but the pattern of  's and  's are different. Of course, you'd expect this, because the 
classes are defined differently, but it does suggest that there is no such thing as an 'objectively' random 
data sequence; it depends what you're measuring the randomness with respect to. 
Whichever option we choose (it might even be both), the numerical data series will have been 
transformed into a binomial series, and we can apply the runs test to it.
The runs test counts the number of runs in a data sequence. This number is a good indication of 
whether the data is random or not, because if there are too few or too many runs relative to the length of 
the data sequence, a lack of independence between values is suggested. So the lack of randomness 
may take various forms, some of which are illustrated below.

Applying the Test
Given a data series, we need some criteria for deciding when the number of runs is so extreme that we 
should reject the null hypothesis (which is that the data is random). 
If there are not many elements in the data series, we can use a table of values which have been 
formulated by the statisticians who developed this test. Once we have our data sequence, we just count 
the number of runs and look in the table to see whether we should reject the null hypothesis (i.e., 
whether there is some evidence that the data is non-random, or unusual). 
The table is valid for a significance level of 5%, which means that if the number of runs in our sequence 
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is outside or equal to the interval boundaries given in the table, then it occurs with probability 1 in 20 (or 
less). 
The table should be used when the number of elements in either of the classes is less than or equal to 
20. If this is not the case, then we use a formula. But first, I'll give an example of how to use the table 
(shown below).

Suppose you collect data on the gap lengths (number of spins between successive hits) for a certain 
sector of the wheel covering 6 numbers. Here's the sequence (remember — it's crucial that the order in 
which the data was collected is preserved):

Since this is a sequence of numbers (not a sequence of categories such as R/B), we need transform the 
data into a binary (two-valued) sequence. We could do this by looking for values above/below the  mean 
or median, or compare successive values and classify by an increase or decrease.
Let's do both. First compare successive values; if there is a decrease we assign the element a  , and 
if an increase assign it a  . This is shown in row 4 below. Next, compare values with the median 
which is 2.5 (I calculated this in a spreadsheet using the median() function). If the sequence value is 
greater than 2.5 add a plus, otherwise add a minus. The resulting series is shown in row 6.

4, 35, 19, 0, 1, 0, 1, 7, 5, 2, 1, 5, 2, 5, 9, 0, 5, 10, 0, 6, 2, 0, 10, 0, 1, 6, 0, 3, 4
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We are ready to use the table to determine whether the number of runs is significant. Referring to row 4, 
there are 15  's, 13  's, and 19 runs. The leftmost column and top row in the table refer  to  and 

 respectively, which are labels for the classes (it doesn't matter which you call  and  , but let's 
arbitrarily decide that  and  ).
Now it's just a matter of reading down the column to 15, the number of  's, and across to 13, the 
number of  's. At the intersection of this row and column you'll see a pair of numbers which represent 
the 'critical' values (marked by the red box). If the number of runs in your data sequence is between 
these values (not inclusive), then there is no evidence, at the 5% significance level, that the sequence is 
random. 
Since the number of runs is 19, and this is greater than 9 and less than 21, we cannot say that this 
sequence is anything other than random. 
Now we'll look at values above/below the median. Refer to row 6 above. There are 15  's and 15 
's which make up 18 runs. Find the intersection of row 15 and column 15 in the table. The critical values 
are between 10 and 22 (marked by the blue box), so because 18 falls between these values, again 
there is no evidence that the sequence is anything other than random, or that outcomes are varying 
systematically.
A Formula 
When your data sequence increases to a length such that  and  are greater than 20 (the maximum 
values in the table), you can use formulas for the mean and standard deviation of the number of runs, 
which are based on the well known bell curve. Then we calculate a z-score, which gives the number of 
standard deviations from the theoretical mean of the sequence, in terms of the number of runs. 
If you're not sure what all those terms mean, and frankly, don't want to know, then all is not lost, 
because you can use the calculator below. Just enter the values of  ,  , and  and click the button. 
However, for the sake of completeness, and for those who might want to use the formula in their own 
spreadsheet or program, here is the formula for the z-score and its components:

Where  is the number of runs, and  , the average number of runs is given by:

 , where  ,

and  , the standard deviation of the number of runs, is given by:

It's important that you only use this formula (or the calculator) when the numbers of elements in the 
classes are such that you can't use the table (if  or  is more than 20), otherwise the results will be 
misleading. Here's the calculator:

Runs Test Calculator
m (no. of plus)

=  
n (no. of minus)   = 
r (no. of runs)      = 

Calculate!
Z-Score:
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What the Z-Score means
Looking up the critical values in the table tells us whether we're entitled to reject or not reject the null 
hypothesis at the 5% level of significance, but the calculator gives us a number — what does this 
number mean?
There are two considerations: the magnitude of the number and the sign of it. We'll consider the sign 
first (whether it's positive or negative). Remember that if the result of the runs test is 'significant', then 
either there are too many or not enough runs, relative to the length of the data sequence. 

• If there are too few runs, the formula (or calculator) will return a negative number.
• If there are too many runs, the formula (or calculator) will return a positive number.

Try it. Put  ,  , and  into the calculator. You'll get a value of  . The minus 
sign indicates that this data sequence is 'streaky' — there are not enough runs. A sequence of R/B 
outcomes which fits the description might look like this:

RRR BBB RRR B RRRRRR BBBB RRR B RRR BBBBBBB RR BBBBB
There are 20 reds, 21 blacks, and 12 runs. On the other hand, try leaving the values of  and  the 
same but change the number of runs to 30. The calculator will return a value of 2.69. This is a relatively 
large positive number, indicating that the data sequence is 'choppy' — there are too many runs. These 
values might correspond to a R/B sequence like this:

RR B R BB R B R B R BB R B RR B R B RR B R B RR BB R B R B R BB RR BBB
Ok, so that's the sign of the z-score dealt with. The magnitude of the number (how big it is, regardless of 
its sign) tells us the degree of significance we should attach to it. A larger z-score will indicate a greater 
departure from randomness or independence than a smaller number (alternatively, larger z-scores 
indicate more unusual events).
We can relate the z-score to the 5% significance level used in the table. A z-score of magnitude 1.96 
corresponds to a 5% level, meaning that there is only 1 chance in 20 of getting such a score. So if the 
z-score is higher than or equal to 1.96, there is some evidence that the sequence is not random (or the 
sequence is relatively rare, with respect to the number of runs). 
The diagram below may help to give a feel for what the Z-Score means, and how to interpret it.

The 'region of randomness' is represented by the blue interval. Outside it, in both directions, the results 
become significant at the 5% level. Here are some examples of possible scores and how to interpret 
them:

• Z-Score  :  Less than 1.96, so there is no evidence of non-randomness.
• Z-Score  :  Less than 1.96, so there is no evidence of non-randomness.
• Z-Score  :  More than 1.96 and positive, so there is some evidence of non-randomness in 

the direction of too many runs.
• Z-Score  :  Less than 1.96, so there is no evidence of non-randomness. In fact, a score of 0 

indicates that the number of runs is right on the average.
• Z-Score  :  More than 1.96 and negative, so there is evidence of non-randomness in 

the direction of not enough runs.
The runs test is not the only test for randomness; there are many others. In order to test the fitness of a 
random number generator (used for gaming purposes, perhaps), it's necessary to apply many such 
tests. But for checking the independence of a sequence of binary data, the runs test is popular, flexible, 
and easy to apply.  
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m = 20 n = 21 r = 12 −3
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= 0.34
= − 1.25
= 2.3

= 0

= − 2.7


