
1 Probability space, events, and random variables

Examples
We begin with some common examples of probability models:

1. Coin tossing: We can encode a series of coin tosses as a random binary sequence
11010001. . . . Denoting it by ω1ω2ω3 . . . , we expect to see that

ω1 + · · ·+ ωn
n

→ 1

2
.

2. Random walk on Z:

How far is Sn from the origin? Sn ≈
√
n.

What is the probability that the random walk will reach 20 before -10? Equals 1/3.
How long do we have to wait until we hit 20 or -10? 200 in expectation.

3. Brownian motion: “random walk in continuous time”.
Its paths are nowhere differentiable with probability 1.
It is widely used in PDEs, financial maths, mathematical physics, biology, chemistry,
etc.

4. Percolation:

What is the chance that there is an infinite connected cluster?
Either 0 or 1 (and never a number in between!), critical probability for bond percolation
on Z2 is 1/2, and decreases in higher dimensions.

5. Rolling dice: Two people wait to see a particular sequence from successive rolls of a die
– one waits for 456, the other for 666.
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Who will wait the longest?
What is the average waiting time?

Aims of this course

1. Introduce a rigorous setup to study random objects (so far you have only used combi-
natorics (with its limited capacity) plus formulas for expectation without proof).

2. Strong Law of Large Numbers:
If X1, X2, . . . are independent random variables with the same distribution and mean
µ, then

X1 + · · ·+Xn

n
→ µ.

3. Central Limit Theorem:
If X1, X2, . . . are independent random variables with the same distribution, mean µ and
variance σ2, then

X1 + · · ·+Xn

n
≈ µ+

σ√
n
Z,

where Z is a normal random variable. So the fluctuations are µ are of order 1/
√
n and

the randomness does not depend on the distribution of our original random variable.

4. Martingales: random processes which on average stay the same (fair games). Very
useful: SLLN, examples 2 and 5 above, many more.

Reminder from measure theory

A family Σ of subsets of a set Ω is called a σ-algebra if

1. ∅ ∈ Σ,

2. A ∈ Σ =⇒ Ω \A ∈ Σ,

3. A1, A2, . . . ∈ Σ =⇒ ⋃∞
n=1An ∈ Σ

A function µ : Σ→ [0,∞] is called a measure if

1. µ(∅) = 0,

2. A1, A2, . . . ∈ Σ disjoint =⇒ µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An)

A function f : Ω→ R is called measurable if f−1(B) ∈ Σ for all Borel set B.

Definition 1.1.
A measure µ is called a probability measure if µ(Ω) = 1.
A probability space is a triple (Ω,Σ,P).
A random variable is a measurable function X : Ω→ R.
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Idea
Ω = all possible outcomes of a random experiment,
Σ = all possible events,
P(A) = probability of an event A ∈ Σ.

Example 1.2.

1. Coin toss, or X equals 0 or 1 with probabilities 1/2:
Ω = {H,T},
Σ = {∅, {H}, {T},Ω}
P(∅) = 0, P({H}) = 1/2, P({T}) = 1/2, P(Ω) = 1,
X : {H,T} → R, X(H) = 1, X(T ) = 0

2. Roll a die and spell the number you get – let X be the number of letters:
Ω = {1, 2, 3, 4, 5, 6}, Σ = 2Ω (set of all subsets of Ω),
P({1}) = · · · = P({6}) = 1/6 and extend to Σ by additivity,
X : {1, 2, 3, 4, 5, 6} → R,
X(1) = 3, X(2) = 3, X(3) = 5, X(4) = 4, X(5) = 4, X(6) = 3.
Then P(X = 3) = P({ω ∈ Ω : X(ω) = 3)}) = P({1, 2, 6}) = 1/2.

3. We can represent the die experiment in more than one way (i.e. on different probability
spaces), e.g.:
Ω = {0, 1, 2, 3, 4, 5, 6}, Σ = 2Ω,
P({0}) = 0, P({1}) = · · · = P({6}) = 1/6 and extend to Σ by additivity,
X : {0, 1, 2, 3, 4, 5, 6} → R,
X(0) = 4, X(1) = 3, X(2) = 3, X(3) = 5, X(4) = 4, X(5) = 4, X(6) = 3.

4. Toss a coin infinitely many times:
Ω = set of all sequences consisting of 0s and 1s. We can code such a sequence as a
number in [0, 1] by considering each sequence as a binary number. So Ω = [0, 1] but
what is Σ? What kind of events do we want to measure? We certainly want to be able
to measure events that a sequence begins with a certain pattern, e.g. 110:

{ω = 0.ω1ω2ω3 · · · ∈ [0, 1] : ω1 = 1, ω2 = 1, ω3 = 0} = [3/4, 7/8].

So Σ should contain all binary intervals. The smallest σ-algebra with this property is
B, the Borel σ-algebra, so Σ = B.
How should we define P? We want P(110 ∗ ∗ · · · ) = (1/2)3 = 1/8, and observing that
Leb([3/4,7/8])=1/8 (and similarly for all patterns), we set P = Leb. So our probability
space is ([0, 1],B,Leb). We can consider various random variables on this space, for
example, X(ω) = ωn (representing the nth toss).

We often care about the probabilities

P(X ∈ B) := P({ω ∈ Ω : X(ω) ∈ B}),

for Borel sets B, rather than which ω occur. We can record these probabilities with a proba-
bility measure µ on (R,B) defined by

µ(B) = P(X ∈ B), B ∈ B.
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This measure is entirely determined by its values on the sets (−∞, t], t ∈ R. Denote

F (t) = µ((−∞, t]) = P(X ≤ t), t ∈ R.

Definition 1.3.
The measure µ is called the distribution or law of X.
The function F is called the distribution function of X.

Conversely, we can ask: what properties should a function F have to be a distribution function
for some random variable? We begin with some properties of a distribution function and
then show that if a function F has these properties, there exists a random variable with F
its distribution function.

Theorem 1.4 (Properties of a distribution function).
Let F be a distribution function. Then

1. F is increasing,

2. limt→∞ F (t) = 1, limt→−∞ F (t) = 0,

3. F is right continuous.

Proof.

1. Let s ≤ t. Then

F (t) = P({ω : X(ω) ≤ s} ∪ {ω : X(ω) ∈ (s, t]}) ≥ P({ω : X(ω) ≤ s}) = F (s).

2. Let tn →∞ (and set t0 = −∞). Then

F (tn) = P

(
n⋃

i=1

{ω : X(ω) ∈ (ti−1, ti]}
)

=
n∑

i=1

P({ω : X(ω) ∈ (ti−1, ti]})

→
∞∑

i=1

P({ω : X(ω) ∈ (ti−1, ti]}) = P(Ω) = 1.

Similarly, letting tn → −∞,

F (tn) = P(X ≤ tn)→ P(∅) = 0.

3. Let tn ↓ t. Then

F (tn) = P ({X ≤ t} ∪ {X ∈ (t, tn]}) = P(X ≤ t) + P(X ∈ (t, tn])→ F (t).

Theorem 1.5 (Skorokhod Representation).
Let F : R → [0, 1] have the three properties of a distribution function above. Then there is a
random variable X on ([0, 1],B,Leb) with distribution function F .
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Proof. If F is continuous and strictly increasing, then we can just take X(ω) = F−1(ω). Then

Leb(X ≤ u) = Leb({ω : F−1(ω) ≤ u}) = Leb({ω : ω ≤ F (u)}) = F (u).

For more general F , we proceed as follows: Define the “inverse” G : [0, 1]→ R by

G(ω) = inf{t : F (t) > ω}.

We set X(ω) = G(ω) and prove that Leb(X ≤ u) = F (u). It suffices to show that

[0, F (u)) ⊆ {ω ∈ [0, 1] : inf{t : F (t) > ω} ≤ u} ⊆ [0, F (u)].

First suppose ω ∈ [0, F (u)). Then F (u) > ω so u ∈ {t : F (t) > ω} and so

inf{t : F (t) > ω} ≤ u.

On the other hand, set ω ∈ [0, 1] be such that inf{t : F (t) > ω} ≤ u. Then by monotonicity
of F ,

F (inf{t : F (t) > ω}) ≤ F (u),

and so by right-continuity,
inf{F (t) : F (t) > ω} ≤ F (u).

But now since ω ≤ inf{F (t) : F (t) > ω} we have that ω ≤ F (u).

Definition 1.6.
If F (the distribution function of a random variable X) can be written as an integral:

F (t) =

∫ t

−∞
f(u) du,

for some measurable function f , then X is called a continuous random variable with density f .

Remark 1.7.

1. If F is differentiable then X has density f = F ′.

2. If f is a density then
∫∞
−∞ f(t) dt = P(Ω) = 1.

3. If X has density f and law µ, then µ� Leb (Leb(A) = 0 =⇒ µ(A) = 0) and f is the
Radon-Nikodym derivative dµ

dLeb .

Example 1.8 (Examples of distributions).

1. Uniform random variable on [0, 1] (“random number between 0 and 1”).

F (t) =





1, if t > 1,

t, if 0 ≤ t ≤ 1,

0, if t < 0.

and f(t) =

{
1, if 0 ≤ t ≤ 1,

0, otherwise.
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2. Exponential random variable with mean µ.

F (t) =

{
1− e−t/µ, if t > 0,

0, if t ≤ 0.
and f(t) =

{
1
µe
−t/µ, if t > 0,

0, if t ≤ 0.

3. Normal (or Gaussian) random variable with mean µ and variance σ2 (denoted N(µ, σ2)).

f(t) =
1√
2πσ

e−
(t−µ)2

2σ2 .

4. Bernoulli (discrete) random variable with parameter p ∈ [0, 1].

P(X = 0) = 1− p, P(X = 1) = p.

Can compute F :

F (t) =





1, if t ≥ 1,

1− p, if 0 ≤ t < 1

0, if t < 0.

5. Poisson (discrete) random variable with mean λ.

P(X = k) = e−λ
λx

x!
, x = 0, 1, 2, . . .

Definition 1.9.
Let X be a random variable on (Ω,Σ,P). If X is integrable, then

E(X) =

∫
X dP

is called the expectation of X. (If X is not integrable, but X ≥ 0 we write E(X) =∞).

Does this definition agree with the calculation rules used in elementary probability? Such as

E(X) =

∫ ∞

−∞
tf(t) dt, for continuous random variables,

E(X) =
∑

i

aiP(X = ai), for discrete random variables.

Theorem 1.10.
Let X be a random variable on (Ω,Σ,P) with law µ and h an integrable measurable function
on (R,B, µ). Then

∫
h(X) dP =: E(h(X)) = µ(h) :=

∫
h(t) dµ(t).

In particular, if X has density f , then

E(h(X)) =

∫

R
h(t)f(t) dt,

and if X is discrete (taking countably many values) then

E(h(X)) =
∑

i

h(ai)P(X = ai).
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In order to prove this, we recall some results from measure theory.

Reminder from measure theory
Let (Ω,Σ,P) be a probability space and f : Ω → R a measurable function. The integral∫
f dP is defined in the following three steps:

1. If f =
∑n

i=1 ai1{Ai} (a simple function), then
∫
f dP =

∑n
i=1 aiP(Ai).

2. If f ≥ 0 then
∫
f dP = limn→∞

∫
fn dP, where fn are simple, nonnegative and with

fn ↑ f .

3. If f is arbitrary define f+ = max(f, 0) and f− = max(−f, 0), write f = f+ − f− and
define

∫
f dP =

∫
f+ dP −

∫
f− dP (if both of these parts are finite; otherwise we say

that f is not integrable).

Theorem 1.11 (MON).
If f and (fn) are measurable functions from Ω to [0,∞] such that fn ↑ f then

∫
fn dP ↑

∫
f dP.

Theorem 1.12 (DOM).
If f and (fn) are measurable functions from Ω to R such that fn → f and |fn| ≤ g for some
measurable integrable function g then

∫
fn dP→

∫
f dP.

Proof of Theorem 1.10.
We will check the statement for more and more general h. The essence of the proof is contained
in the first step and the standard machinery is used to do the next steps. To begin with we
suppose h is an indicator function.

1. h = 1{B}, B ∈ B:

E(h(X)) =

∫
h(X) dP = P(X ∈ B),

∫

R
h(t) dµ(t) =

∫

R
1{B}(t) dµ(t) = µ(B) = P(X ∈ B).

2. h =
∑n

i=1 ai1{Bi}, all ai ∈ R, Bi ∈ B:
Use linearity of the expectation and the integral.

3. h ≥ 0 integrable:
Choose simple hn ↑ h. Then hn(X) ↑ h(X) and we apply MON to both sides.

4. h integrable:
Write h = h+ − h− and use additivity of both sides.

If X has density f , then it is the Radon-Nikodym derivative of µ with respect to Leb and

E(h(X)) =

∫

R
h(t) dµ(t) =

∫

R
h(t)f(t) dt.

If X is discrete then µ({ai}) = P(X = ai) and so

E(h(X)) =

∫

R
h(t) dµ(t) =

∑
h(ai)P(X = ai).
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Definition 1.13.
Let X be a square-integrable (i.e. E(X2) <∞) random variable. Then

Var(X) = E((X − E(X))2) = E(X2)− (E(X))2,

is called the variance of X.

Lemma 1.14 (Square-integrability implies integrability).
If E(X2) <∞, then E|X| <∞ and so E(X) <∞.

Proof. By the Cauchy-Schwarz inequality,

E|X| ≤
√
E(X2)

√
E(12) <∞.

Theorem 1.15 (Markov’s/Chebyshev’s Inequality).
Let X be a non-negative random variable and c > 0. Then cP(X ≥ c) ≤ E(X).

Proof. Let

Y (ω) =

{
c, if X(ω) ≥ c,
0, otherwise.

Then X(ω) ≥ Y (ω) for all ω and so taking expectations

E(X) ≥ E(Y ) = cP(X ≥ c).

2 Independence

Let (Ω,Σ,P) be a probability space.

Definition 2.1.

• Two events A,B ∈ Σ are independent if P(A ∩B) = P(A)P(B).

• Two σ-algebras Σ1,Σ2 ⊂ Σ are independent if

P (A1 ∩A2) = P(A1)P(A2) for all A1 ∈ Σ1, A2 ∈ Σ2.

• Finitely many σ-algebras Σ1, . . . ,Σn are independent if

P(A1 ∩ · · · ∩An) = P(A1) · · ·P(An) for all A1 ∈ Σ1, . . . , An ∈ Σn.

• Countably many σ-algebras Σ1,Σ2, . . . are independent if Σ1, . . . ,Σn are independent
for each n.

Definition 2.2.
Let X be a random variable on (Ω,Σ,P). Then

σ(X) := {{ω : X(ω) ∈ B} : B ∈ B}

is called the σ-algebra generated by X.
Random variables (Xn) are independent if (σ(Xn)) are independent.
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Example 2.3.

1. Toss a coin and roll a die: gives two random numbers X and Y . We can model this
experiment on a probability space

Ω = {0, 1} × {1, 2, 3, 4, 5, 6}, Σ = 2Ω, P({ω}) = 1/12,

ω = (ω1, ω2), X(ω) = ω1, Y (ω) = ω2,

σ(X) = {∅,Ω, {X = 0}, {X = 1}},
σ(Y ) = {∅,Ω, {Y = 1}, . . . , {Y = 6}, {Y = 1, Y = 2}, . . .}.

We can check if X and Y are independent, for example if

1

12
= P(X = 0, Y = 1) = P(X = 0)P(Y = 1) =

1

2
· 1

6
.

X and Y are indeed independent.

2. We first toss a coin to get X. If the coin comes up tails, we set Y = 6, otherwise we
roll a die to obtain Y . We can model this experiment on the space:

Ω = {0, 1}×{1, 2, 3, 4, 5, 6}, Σ = 2Ω, P({1, ω2}) = 1/12, P({0, 6}) = 1/2, P({0, ω2}) = 0, ω2 6= 6,

and with X,σ(X) and Y, σ(Y ) as before. X and Y are not independent since

P(X = 0, Y = 1) = 0 6= P(X = 0)P(Y = 1) = 1/24.

Definition 2.4.
A subcollection I ⊂ Σ is a π-system if A ∩ B ∈ I whenever A,B ∈ I (closed under finite
intersections).

Example 2.5.

1. {(−∞, t], t ∈ R} and {∅, (a, b), a < b} are two π-systems which generate B.

2. {{X < t}, t ∈ R} and {{X ≤ t}, t ∈ R} are two π-systems which generate σ(X) for a
random variable X.

3. If X takes countably many values a1, a2, . . . then {∅, {X = a1}, {X = a2}, . . .} is a
π-system generating σ(X).

Theorem 2.6.
Let I be a π-system and µ1 and µ2 be two measures on (Ω, σ(I)) such that µ1 = µ2 on I and
µ1(Ω) = µ2(Ω) <∞. Then µ1 = µ2 on σ(I).

Theorem 2.7.
If two π-systems I and J are independent, that is,

P(I ∩ J) = P(I)P(J)

whenever I ∈ I, J ∈ J , then σ(I) and σ(J ) are independent.
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Proof. Fix I ∈ I and set

µ1(B) = P(I ∩B),

µ2(B) = P(I)P(B)

for B ∈ σ(J ). They agree for B ∈ J and satisfy µ1(Ω) = µ2(Ω) = P(I) < ∞. Hence by
Theorem 2.6 they agree on σ(J ), i.e.

P(I ∩B) = P(I)P(B)

whenever I ∈ I, B ∈ σ(J ). Now fix B ∈ σ(J ) and consider

µ1(A) = P(A ∩B),

µ2(A) = P(A)P(B),

for A ∈ σ(I). They agree on I and satisfy µ1(Ω) = µ2(Ω) = P(B) <∞. Hence by Theorem
2.6 they agree on σ(I). This implies

P(A ∩B) = P(A)P(B)

whenever A ∈ σ(I), B ∈ σ(J ).

Corollary 2.8.
Continuous random variables X and Y are independent if and only if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y),

for all x, y.
Discrete random variables X and Y taking values a1, a2, . . . and b1, b2, . . . respectively, are
independent if and only if

P(X = ai, Y = bj) = P(X = ai)P(Y = bj)

for all i, j.

Infinite and Finite Occurrence of Events

Example 2.9.
Let (Xn) be independent Bernoulli random variables. How do we formalise the intuitively
clear statement “1 occurs infinitely often with probability 1”?
Let En = {Xn = 1} and denote

E = {1 occurs infinitely often}
= {∀N ∃n ≥ N : Xn = 1}

=

∞⋂

N=1

∞⋃

n=N

En.

The statement “1 occurs infinitely often with probability 1” means P(E) = 1.
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Notation:
Let (En) be a sequence of events.

• The event which contains all ω belonging to infinitely many of (En) is denoted by

{En i.o.} =

∞⋂

N=1

∞⋃

n=N

En.

• The complement of this events contains all ω belonging to only finitely many of (En)
and is

{En i.o}c =
∞⋃

N=1

∞⋂

n=N

Ecn.

We have to deal with infinite/finite occurence of events when we discuss limits, eg. in the
Strong Law of Large Numbers:

Theorem 2.10 (SLLN).
Let (Xn) be independent identically distributed random variables such that E|X1| <∞. Then

X1 + . . .+Xn

n
→ E(X1) almost surely.

Notation:
We shall use the abbreviation i.i.d. for “independent identically distributed” and a.s. for
“almost surely”.

The Strong Law of Large Numbers is a very important and hard-to-prove theorem. We will
prove it towards the end of the course in this form, but along the way we shall prove it for
specific cases:

• Bernoulli r.v.s via a direct calculation.

• Bounded r.v.s (exercise – similar to Bernoulli)

• Square-integrable r.v.s – an easy proof once we have developed the theory of martingales.

• General case – hard proof using martingale theory.

What will we actually need to prove?
Denote Sn = X1 + · · ·+Xn and µ = E(X1). We want to show that Sn

n → µ as n→∞ with
probability 1. Consider the event

E =

{
ω ∈ Ω :

Sn(ω)

n
→ µ

}
.
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We want to show that P(E) = 1. We have

E =

{
∀k ∃N : ∀n ≥ N,

∣∣Sn
n
− µ

∣∣ < 1/k

}

=
∞⋂

k=1

∞⋃

N=1

∞⋂

n=N

{∣∣Sn
n
− µ

∣∣ < 1/k

}

=
∞⋂

k=1

∞⋃

N=1

∞⋂

n=N

{∣∣Sn
n
− µ

∣∣ ≥ 1/k

}c

=
∞⋂

k=1

{∣∣Sn
n
− µ

∣∣ ≥ 1/k i.o.

}c
.

Proving P(E) = 1 is the same as proving that

P
({∣∣Sn

n
− µ

∣∣ ≥ 1/k i.o.

}c)
= 1 for all k, i.e.

P
(∣∣Sn

n
− µ

∣∣ ≥ 1/k i.o.

)
= 0 for all k.

Theorem 2.11 (Borel-Cantelli Lemma 1: BC1).
Let (En) be events such that

∑∞
n=1 P(En) <∞. Then P(En i.o.) = 0.

Theorem 2.12 (Borel-Cantelli Lemma 2: BC2).
Let (En) be independent events such that

∑
P(En) =∞. Then P(En i.o.) = 1.

The requirement of independence cannot be removed. For example suppose E is an event
with 0 < P(E) < 1 and set En = E for all n. Then

∑
P(En) =∞ but P(En i.o.) = P(E) 6= 1.

Proof of BC1. For each N ,

P

( ∞⋃

n=N

En

)
≤
∞∑

n=N

P(En)→ 0,

as N →∞ by the assumption that the series converges. Now,

P(En i.o.) = P

( ∞⋂

N=1

∞⋃

n=N

En

)
≤ lim

N→∞
P

( ∞⋃

n=N

En

)
= 0.

Proof of BC2. We want to prove

P

( ∞⋂

N=1

∞⋃

n=N

En

)
= 1, i.e. P

( ∞⋃

N=1

∞⋂

n=N

Ecn

)
= 0, i.e. P

( ∞⋂

n=N

Ecn

)
= 0, ∀N.
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Using 1− x ≤ e−x for all x ∈ R, we have

P

( ∞⋂

n=N

Ecn

)
≤ lim

k→∞
P

(
k⋂

n=N

Ecn

)
= lim

k→∞

k∏

n=N

P(Ecn)

= lim
k→∞

k∏

n=N

(1− P(En)) ≤ lim
k→∞

k∏

n=N

e−P(En)

= lim
k→∞

e−
∑k
n=N P(En)

= e− limk→∞
∑k
n=N P(En)

= 0,

where the first equality uses the independence assumption, and the last uses
∑

P(En) = ∞.

Example 2.13.
Let (Xn) be an iid sequence of exponential random variables. We shall show that

lim sup
n→∞

Xn

log n
= 1. (1)

Recall: lim sup an = largest number a such that there is a subsequence (ank) converging to a.
To prove lim sup an = a it suffices to show that

• ∀ b > a, an > b only finitely often,

• ∀ b < a, an > b infinitely often.

Let us prove (1):

• Let b > 1. We want to show that

P(Xn > b log n i.o.) = 0.

We shall use BC1:

∞∑

n=1

P(Xn > b log n) =

∞∑

n=1

e−b logn =

∞∑

n=1

1

nb
<∞,

since b > 1.

• Let b < 1. We want to show that

P(Xn > b log n i.o.) = 1.

We shall use BC2:
∞∑

n=1

P(Xn > b log n) =

∞∑

n=1

1

nb
=∞,

as b < 1.
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Example 2.14. let (Xn) be an iid sequence.

• Suppose E|X1| = µ <∞. Then by SLLN

Xn

n
=
X1 + · · ·+Xn

n
− X1 + · · ·+Xn−1

n− 1
· n− 1

n
→ µ− µ · 1 = 0,

almost surely.

• Suppose E|X1| =∞ (so SLLN is not applicable). Then

lim sup
n→∞

|Xn|
n

=∞.

We can prove this using BC2. We want

P
(

lim sup
n→∞

|Xn|
n

=∞
)

= 1

i.e. P
(
∀m∀N ∃n ≥ N :

|Xn|
n

> m

)
= 1

i.e. P

( ∞⋂

m=1

∞⋂

N=1

∞⋃

n=N

{ |Xn|
n

> m

})
= 1

i.e. P

( ∞⋂

m=1

{ |Xn|
n

> m i.o.

})
= 1

i.e. P
( |Xn|

n
> m i.o.

)
= 1 ∀m.

The events {|Xn|/n > m}, n ∈ N are independent and

∞∑

n=1

P
( |Xn|

n
> m

)
=
∞∑

n=1

P
( |X1|

n
> m

)
=
∞∑

n=1

E1{ |X1|
n
>m}

MON
= E

∞∑

n=1

1{ |X1|
n
>m} = E

∞∑

n=1

1{n<|X1|/m} = E
( |X1|

m
− 1

)
=∞.

The result now follows from BC2.

Natural model for independent random variables

Let µ1 and µ2 be two laws. We want to construct random variables X1 and X2 such that

• X1 has law µ1 and X2 has law µ2,

• X1 and X2 are independent.

Method:

• Construct a random variable X̃1 on (Ω1,Σ1,P1) with law µ1 (exists by Skorokhod Rep-
resentation Theorem).
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• Construct a random variable X̃2 on (Ω2,Σ2,P2) with law µ2.

• Let (Ω,Σ,P) = (Ω1 × Ω2,Σ1 × Σ2,P1 ⊗ P2).

• Define X1(ω1, ω2) = X̃1(ω1), X2(ω1, ω2) = X̃2(ω2). Exercise: show that X1 and X2

satisfy the two desired properties above.

Theorem 2.15 (Independence and expectation/variance).
Let X and Y be two independent random variables.

1. If E|X| <∞ and E|Y | <∞ then E|XY | <∞ and E(XY ) = E(X)E(Y ).

2. If E(X2) <∞ and E(Y 2) <∞ then Var(X + Y ) = Var(X) + Var(Y ).

Proof. 1. It suffices to prove the result for simple random variables (and the result will
then hold generally using the standard machine). So let

X =

n∑

i=1

αi1{Ai}, Y =

m∑

j=1

βj1{Bj},

with α1, . . . , αn, β1, . . . , βm ∈ R and A1, . . . , An, B1, . . . , Bm ∈ Σ. Then we have

E(XY ) = E




n∑

i=1

m∑

j=1

αiβj1{Ai}1{Bj}


 =

n∑

i=1

m∑

j=1

αiβjE
(
1{Ai∩Bj}

)

=
n∑

i=1

m∑

j=1

αiβjP(Ai ∩Bj) =
n∑

i=1

m∑

j=1

αiβjP(Xi = αi, Y = βj)

=

n∑

i=1

m∑

j=1

αiβjP(X = αi)P(Y = βj)

=

(
n∑

i=1

αiP(X = αi)

)


m∑

j=1

βjP(Y = βj)


 = E(X)E(Y ).

2. We have

Var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

= E(X2) + 2E(XY ) + E(Y 2)− (E(X))2 − 2E(X)E(Y )− (E(Y ))2

= Var(X) + Var(Y ),

since E(XY ) = E(X)E(Y ).

Example 2.16. Let X be a Binom(n, p) random variable, so that

P(X = k) =

(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n.

We know that X = X1 + · · ·+Xn where Xi are iid Bernoulli(p). Then

E(X) = E(X1) + · · ·+ E(Xn) = np, Var(X) = Var(X1) + · · ·+ Var(Xn) = np(1− p).

15



Theorem 2.17 (Bernstein’s Inequality).
let X1, . . . , Xn be iid random variables with P(Xi = 1) = P(Xi = −1) = 1/2. Then

P

(
∣∣
n∑

i=1

aiXi

∣∣ ≥ t
)
≤ 2 exp

(
− t2

2
∑
a2
i

)
,

for any a1, . . . , an ∈ R.

Proof. Denote c =
∑
a2
i . For any λ > 0,

E
(

exp
{
λ
∑

aiXi

})
= E

(∏
eλaiXi

)
=
∏

E
(
eλaiXi

)
=
∏

cosh(λai).

Using cosh(x) ≤ ex2/2 (exercise), we get

E
(

exp
{
λ
∑

aiXi

})
≤
∏

eλ
2a2i /2 = ecλ

2/2.

We have, using Markov’s Inequality,

P(
∑

aiXi ≥ t) = P(exp{λ
∑

aiXi} ≥ eλt)

≤ e−λtE
(

exp{λ
∑

aiXi}
)

≤ exp
{
cλ2/2− λt

}
.

Differentiating, we find optimal λ = t/c. Substituting this gives

P(
∑

aiXi ≥ t) ≤ e−t
2/2c.

Similarly,

P(
∑

aiXi ≤ −t) ≤ e−t
2/2c.

Theorem 2.18 (SLLN for Bernoulli random variables).
Let (Xi) be iid with P(Xi = 1) = P(Xi = −1) = 1/2. Then

X1 + · · ·+Xn

n
→ 0 a.s.

Proof.
Denote Sn = X1 + · · ·+Xn. We want to show that P(Sn → 0) i.e.

P(|Sn| ≥ n/k i.o.) = 0 ∀k.

This follows from BC1 and Bernstein’s Inequality with a1 = · · · = an = 1:

∞∑

n=1

P(|Sn| ≥ n/k) ≤ 2

∞∑

n=1

e−n/2k
2
<∞.

Exercise: Using this method, prove SLLN for bounded random variables.
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Definition 2.19.
Let X and Y be random variables on (Ω,Σ,P). The joint law of (X,Y ) is the probability
measure µX,Y on (R2,B(R2)) given by

µX,Y (B) = P((X,Y ) ∈ B), B ∈ B(R2).

The joint distribution function FX,Y : R2 → [0, 1] is defined by

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = µX,Y ((−∞, x]× (−∞, y]).

This definition naturally extends to any finite number of random variables.

Theorem 2.20.

1. X and Y are independent if and only if FX,Y (x, y) = FX(x)FY (y).

2. If X and Y are independent and have densities f and g then µX,Y has density (x, y) 7→
f(x)g(y), i.e.

µX,Y (B) =

∫

B
f(x)g(y) dxdy, B ∈ B(R2).

3. If X and Y are independent and have densities f and g, then X + Y has density

(f ∗ g)(t) =

∫ ∞

−∞
f(s)g(t− s) ds,

which is called the convolution of f and g.

Proof.

1. σ(X) is generated by the π-system {X ≤ x, x ∈ R} and σ(Y ) is generated by the
π-system {Y ≤ y, y ∈ R}. These are independent iff

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y).

2. For B = (−∞, x]× (−∞, y],

µX,Y (B) = µX,Y ((−∞, x]× (−∞, y]) = FX,Y (x, y) = FX(x)FY (y)

=

∫ x

−∞
f(u) du

∫ y

−∞
g(v) dv =

∫

B
f(u)g(v) dudv.

These two measures agree on the π-system

{(−∞, x]× (−∞, y] : x, y ∈ R}

and hence on B(R2).
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3. For any t,

FX+Y (t) = P(X + Y ≤ t) = µX,Y ({(x, y) : x+ y ≤ t})

=

∫

{(x,y):x+y≤t}
f(x)g(y) dxdy

=

∫ ∞

−∞
f(x)

∫ t−x

−∞
g(y) dydx.

Substituting y = v − x, gives

FX+Y (t) =

∫ ∞

−∞
f(x)

∫ t

−∞
g(v − x) dvdx =

∫ t

−∞

∫ ∞

−∞
f(x)g(v − x) dxdv.

Hence

fX+Y (v) =

∫ ∞

−∞
f(x)g(v − x) dx.

Definition 2.21.
Let (Xi) be random variables. For each n ≥ 0, set τn = σ(Xn+1, Xn+2, . . .). τn is called the
n-th tail σ-algebra of (Xi) and τ :=

⋂∞
n=0 τn is called the tail σ-algebra of (Xi). An event E

is a tail event if E ∈ τ .

Remark 2.22.

• τn contains events which do not depend on X1, . . . , Xn.

• τ contains events which do not depend on any finite number of the Xi.

Example 2.23.

• {Xn → a} is a tail event: for each m,

{Xn → a} = {Xm+n → a} =

∞⋂

k=1

∞⋃

N=1

∞⋂

n=N

{|Xm+n − a| < 1/k} ∈ τm,

and so {Xn → a} ∈ τ .

• {limn→∞Xn exists}, {∑Xn <∞} are tail events.

• {limn→∞
X1+···+Xn

n exists} is a tail event: for each m,

X1 + · · ·+Xn

n
=
X1 + · · ·+Xm

n
+
Xm+1 + · · ·+Xn

n
.

The first term always converges to 0, so convergence of (X1 + · · ·+Xn)/n is equivalent
to convergence of (Xm+1 + · · ·+Xn)/n and so does not depend on X1, . . . , Xm. Since
this is true for each m, this is a tail event.
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• {supXn > 0} is not a tail event. Let P(X1 = 0) = P(X1 = 1) = 1/2 and Xn = 0 for all
n ≥ 2. Then τn = {∅,Ω} for all n ≥ 2 and so τ = {∅,Ω}. But {supXn > 0} = {Xn =
1} /∈ τ since P(X1 = 1) = 1/2.

Theorem 2.24 (Kolmogorov’s 0-1 law).
If (Xn) is a sequence of independent random variabes then every tail event has probability 0
or 1.

Proof. Let σn = σ(X1, . . . , Xn) and recall τn = σ(Xn+1, Xn+2, . . .). σn is generated by the
π-system

{X1 ∈ B1, . . . , Xn ∈ Bn : B1, . . . , Bn ∈ B}.
τn is generated by the π-system

{Xn+1 ∈ Bn+1, . . . , Xn+m ∈ Bn+m : m ∈ N, Bn+1, . . . , Bn+m ∈ B}

These π-systems are independent and so σn and τn are independent. Since τ ⊂ τn, σn and
τ are independent for each n. Set σ∞ = σ(X1, X2, . . .). σ∞ is generated by the π-system
σ1 ∪ σ2 ∪ · · · which is independent of τ . Hence τ and σ∞ are independent. Since τ ⊂ σ∞,
this implies τ is independent of itself. So each A ∈ τ satisfies

P(A) = P(A ∩A) = P(A)2,

and so P(A) ∈ {0, 1}.

Example 2.25. If (Xn) are independent, then

1. P(Xn → a), P(limXn exists), P(
∑
Xn <∞), . . . ∈ {0, 1}.

2.

P(Xn/n→ 0) =

{
1, if E|X1| <∞ (follows from SLLN seen),

0, if E|X1| =∞ (seen).

3 Weak Convergence

When are two random variables “close”? There are many ways in which two random variables
can be considered similar, for example:

• Strong sense: X = Y almost surely, i.e. P(X = Y ) = 1

• Weak sense: µX = µY

Note that for almost-sure convergence to make sense, the two random variables X and Y
must lie in the same probability space. This requirement is not required for the weak sense
of convergence. Let X and Y be two independent Bernoulli random variables. They are not
close in the almost-sure sense since

P(X = Y ) = P(X = 0, Y = 0) + P(X = 1, Y = 1) =
1

4
+

1

4
=

1

2
.
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But they are close (in fact equal) in the weak sense as they have the same distribution. Later
in the course we shall prove the Central Limit Theorem which states that for i.i.d. random
variables with mean µ and variance σ2:

the law of
X1 + · · ·+Xn − µn

σ
√
n

≈ N(0, 1).

We make this notion of weak convergence precise in the following definition.

Definition 3.1 (Weak convergence).
Let (Xn) and X be random variables with laws (µn) and µ and distribution functions (Fn)
and F . (Xn) is said to converge weakly to X (or µn converges weakly to µ) if Fn(t) → F (t)
for all t where F is continuous.

Remark 3.2.

1. Weak convergence is often called convergence in law or in distribution. It is usually
denoted

d→ or
w→ or ⇒

2. Why does the definition avoid points of discontinuity? Consider the example Xn(ω) =
1/n for all ω and n (so that the distribution functions are step functions). According to

our definition Xn
d→ 0 which is natural. But note that Fn converges to a function which

is not right-continuous at 0. So if we did not exclude t = 0 then the limiting function
would not be a distribution function of any random variable.

3. Let (Xn) be a sequence of independent Bernoulli random variables (a sequence of coin
tosses). Then (Xn) does not converge almost surely, but it does converge weakly to a
Bernoulli random variable (trivially).

Theorem 3.3 (Relation between weak and almost-sure convergence).

1. If Xn → X almost surely, then Xn
d→ X.

2. If µn
d→ µ then there exist random variables (Xn) and X defined on the same probability

space such that each Xn has law µn, X has law µ and Xn → X almost surely.

Theorem 3.4 (Useful definition of weak convergence).

µn
d→ µ if and only if

∫
h dµn →

∫
h dµ for every continuous bounded function h : R→ R.

We shall prove these theorems in the following order:
Theorem 3.3 (2), Theorem 3.4 (⇒), Theorem 3.4 (⇐), Theorem 3.3 (1).

Proof of Theorem 3.3 (2).
Denote by (Fn) and F the distribution functions associated to laws (µn) and µ (i.e. Fn(t) =
µn((−∞, t]) and F (t) = µ((−∞, t])). We shall use the Skorokhod Representation to construct
the random variables (Xn) and X. Let the probability space be ([0, 1],B,Leb) and define (Xn)
and X as:

Xn(ω) = inf{t : Fn(t) > ω}, X(ω) = inf{t : F (t) > ω}.
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We shall show that Xn → X except on a set of (Lebesgue) measure 0. This set is defined as

B := {ω ∈ [0, 1] : ∃x 6= y ∈ R, F (x) = F (y) = ω}.

We claim that Leb(B) = 0 and Xn(ω) → X(ω) for all ω ∈ [0, 1] \ B, i.e. Xn → X almost
surely.

1. Leb(B) = 0:
We prove this by showing that B has countably many elements. To every ω ∈ B, we
associate an interval (xω, yω) where we have F (xω) = F (yω) = ω. By monotonicity
of F , the intervals do not overlap (and hence each such interval contains only one
ω ∈ B). Furthermore, every interval contains a rational. Since the set of rationals, Q,
is countable, there can only be countably many intervals and so B is countable. Thus
Leb(B)=0.

2. F has countably many discontinuity points:
To every discontinuity point t, associate the interval (lims↑t F (s), lims↓t F (s)). By mono-
tonicity of F the intervals do not overlap. Furthermore, every interval contains a ratio-
nal. Hence as Q is countable, there are countably many discontinuity points.

3. Fix an ω ∈ [0, 1] \B. Then Xn(ω)→ X:
For ease of notation, set x = X(ω) and let ε > 0. Since there are only countably many
points of discontinuity of F , we can find a δ with 0 < δ ≤ ε such that x− δ and x+ δ
are continuity points of F . Since ω /∈ B, F (x−δ) < ω < F (x+δ). Also, since x−δ and
x+δ are continuity points, by the definition of weak convergence, Fn(x±δ)→ F (x±δ).
Hence for all n sufficiently large

Fn(x− δ) < ω < Fn(x+ δ).

Then, by the definition of Xn, for such n we have

x− δ < Xn(ω) ≤ x+ δ.

Hence for all n sufficiently large,

|Xn(ω)−X(ω)| < δ ≤ ε.

Proof of Theorem 3.4 (⇒).

As µn
d→ µ, we use Theorem 3.3 (2) to choose (Xn) and X such that Xn → X almost surely.

As h is continuous h(Xn) → h(X) and further, since h is bounded we can apply DOM to
deduce that ∫

h dµ = E(h(Xn))→ E(h(X)) =

∫
h dµ.

21



Proof of Theorem 3.4 (⇐).
Let x be a point of continuity of F . We want to show that Fn(x) → F (x) as n → ∞. Let
δ > 0 and consider any continuous function h satisfying

h(t) =





1 if t ≤ x− δ
0 if t ≥ x
∈ [0, 1] otherwise.

Then

Fn(x) =

∫
1{(−∞,x]} dµn ≥

∫
h dµn,

and by assumption

lim inf Fn(x) ≥ lim

∫
h dµn =

∫
h dµ ≥

∫
1{(−∞,x−δ]} dµ = F (x− δ).

By continuity of F at x, letting δ ↓ 0, gives lim inf Fn(x) ≥ F (x).

Now consider any continuous function h satisfying

h(t) =





1 if t ≤ x
0 if t ≥ x+ δ

∈ [0, 1] otherwise.

Then similarly to above we have

Fn(x) =

∫
1{(−∞,x]} dµn ≤

∫
h dµn,

and so

lim supFn(x) ≤ lim

∫
h dµn =

∫
h dµ ≤

∫
1{(−∞,x+δ]} dµ = F (x+ δ).

By continuity of F at x, letting δ ↓ 0, gives lim supFn(x) ≤ F (x).
Hence limFn(x) = F (x).

Proof of Theorem 3.3 (1). Suppose Xn → X almost surely. Then h(Xn) → h(X) for any
bounded continuous function h and so for such h,

∫
h dµn = E(h(Xn))

DOM→ E(h(X)) =

∫
h dµ.

Hence Xn
d→ X by Theorem 3.4 (⇐).

Definition 3.5.
h : R→ R is called a C2 function if h′′ exists and is continuous.
It is called a C2 test function if it is C2 and equals zero outside a bounded region.

Theorem 3.6 (Useful defintion of weak convergence 2).

µn
d→ µ if and only if

∫
h dµn →

∫
h dµ for every C2 test function h.
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Definition 3.7.
A sequence of probability measures (µn) is tight if for every ε > 0, there is M > 0 such that

µn([−M,M ]) ≥ 1− ε for all n.

Example 3.8.

• If each µn has one unit atom at n, i.e. µn(A) = δn(A), then (µn) is not tight.

• If each µn has an atom of size 1− an at 0 and an atom of size an at n, i.e.

µn(A) = (1− an)δ0(A) + anδn(A),

then (µn) is tight if and only if an → 0.

Proof of Theorem 3.6 (⇒).
This follows from Theorem 3.4 since every C2 test function is continuous and bounded.

Proof of Theorem 3.6 (⇐).

1. We first show that the RHS implies tightness of (µn). Let ε > 0 and choose M1 so that
µ([−M1,M1]) ≥ 1− ε/2. Consider a C2 function h such that

h(t) =





1 if |t| ≤M1

0 if |t| ≥M1 + 1

∈ [0, 1] otherwise.

We have

µn([−M1 − 1,M1 + 1]) =

∫
1{[−M1−1,M1+1]} dµn ≥

∫
h dµn,

but by our assumption there exists N such that for all n > N ,
∫
h dµn ≥

∫
h dµ− ε/2

and so for such n,

µn([−M1 − 1,M1 + 1]) ≥
∫
h dµ− ε/2 ≥

∫
1{[−M1,M1]} dµ− ε/2 ≥ 1− ε.

For the finitely many 1 ≤ n ≤ N , choose M2 so that µn([−M2,M2]) ≥ 1 − ε. Now
choose M = max{M1 + 1,M2}.

2. Let x be a point of continuity of F . Fix ε > 0 and δ > 0 and choose M as above.
Consider the function h defined as

h(t) =





1 on [−M,x− δ]
0 on (−∞,−M − 1] and [x,∞)

C2 and ∈ [0, 1] otherwise.
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We have

Fn(x) =

∫
1{(−∞,x]} dµn ≥

∫
h dµn

lim inf
n→∞

Fn(x) ≥ lim
n→∞

∫
h dµn =

∫
h dµ ≥

∫
h1{(−∞,−M ]} dµ+

∫
1{(M,x−δ]} dµ

=

∫
1{(−∞,x−δ]} dµ−

∫
(1− h)1{(−∞,−M ]} dµ .

Now using that (1− h) ≤ 1, we have

lim inf
n→∞

Fn(x) ≥ F (x− δ)− µ((−∞,−M ]) ≥ F (x− δ)− ε.

Letting ε, δ → 0 by continuity we have lim infn→∞ Fn(x) ≥ F (x).
Now consider the function h defined as

h(t) =





1 on [−M,x]

0 on (−∞,−M − 1] and [x+ δ,∞)

C2 and ∈ [0, 1] otherwise.

Similarly to above we have

Fn(x) = µn((−∞,−M ]) +

∫
1{[−M,x]} dµn ≤ ε+

∫
h dµn

lim sup
n→∞

Fn(x) ≤ ε+ lim
n→∞

∫
h dµn = ε+

∫
h dµ ≤ ε+

∫
1{(−∞,x+δ]} dµ = ε+ F (x+ δ).

Letting ε, δ → 0 by continuity we have lim supn→∞ Fn(x) ≤ F (x).
Thus limn→∞ Fn(x) = F (x).

Definition 3.9.
The Fourier transform of a probability measure µ on (R,B) is

µ̂ : R→ R, µ̂(t) =

∫

R
eitx dµ(x).

The characteristic function of a random variable X is

ϕ : R→ R, ϕ(t) = E(eitX).

The Fourier transform of a Lebesgue integrable function h : R→ R is

ĥ : R→ R, ĥ(t) =

∫

R
eitxh(x) dx.

Remark 3.10.

1. The characteristic function of a random variable is the Fourier transform of its law.

2. If µ has density h then µ̂ = ĥ.
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3. The Fourier transforms and characteristic functions are always well-defined since |eitx| =
1.

4. We will prove that X and Y have the same distribution if and only if they have the
same characteristic functions.

5. We will prove that Xn
d→ X if and only if ϕn(t)→ ϕ(t) for all t ∈ R.

Theorem 3.11 (Properties of characteristic functions).

1. ϕ(0) = 1.

2. ϕλX(t) = ϕX(λt).

3. If X and Y are independent then ϕX+Y (t) = ϕX(t)ϕY (t).

4. ϕ is continuous.

Proof.
(1) and (2) are obvious.
(3) ϕX+Y (t) = E(eit(X+Y )) = E(eitX)E(eitY ) = ϕX(t)ϕY (t).
(4) If tn → t then eitnX → eitX and this sequence is dominated by 1 so by DOM,

ϕ(tn) = E(eitnX)→ E(eitX) = ϕ(t).

Example 3.12.

1. If P(X = 1) = P(X = −1) = 1/2 then

ϕ(t) =
1

2
eit +

1

2
e−it = cos t.

2. If X is uniform on [−1, 1] then

ϕ(t) =

∫ 1

−1

1

2
eitx dx =

sin t

t
.

3. If X is Cauchy, that is, with density f(x) = 1
π(1+x2)

, then

ϕ(t) =
1

π

∫ ∞

−∞

eitx

1 + x2
dx = e−|t|

(this integral can be computed using contour integrals).

4. If X is N(0,1) then

ϕ(t) =
1√
2π

∫ ∞

−∞
eitx−

x2

2 dx = e−t
2/2 1√

2π

∫ ∞

−∞
e−

(x−it)2
2 dx

= e−t
2/2 1√

2π
lim
R→∞

∫

Γ1(R)
e−z

2/2 dz,
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where Γ1(R) = [−R− it, R− it].
Denote by Γ2(R) = [−R − it,−R], Γ3(R) = [−R,R] and Γ4(R) = [R,R − it]. Since
e−z

2/2 is analytic, we have (Residue Theorem)
∫

Γ1(R)
e−z

2/2 dz +

∫

Γ2(R)
e−z

2/2 dz −
∫

Γ3(R)
e−z

2/2 dz +

∫

Γ4(R)
e−z

2/2 dz = 0.

However, notice that ∫

Γ3(R)
e−z

2/2 dz =
√

2π.

Further, on Γ2 and Γ4, we have z = ±R− iy and so Re(z2) = R2 − y2 which gives

|e−z2/2| = e−
R2−y2

2 ≤ e−R
2−t2
2 .

This implies ∣∣∣
∫

Γ2,4(R)
e−z

2/2 dz
∣∣∣ ≤ |t|e−R

2−t2
2 → 0

as R→∞. Thus ∫

Γ1(R)
e−z

2/2 dz →
√

2π

as R→∞, giving ϕ(t) = e−t
2/2.

Lemma 3.13. ∫ ∞

0

sin t

t
dt =

π

2

and the function ρ(x) =
∫ x

0
sin t
t dt, x ≥ 0 is bounded.

Proof. The value of the integral was computed in Complex Analysis.
The function is bounded since it is continuous and converges at ∞ (minimum/maximum
theorem).

Lemma 3.14 (Decay of the Fourier transform).
If h is a C2 test function then |ĥ(t)| ≤ c/t2 for some c > 0 and all t 6= 0. In particular,

∫ ∞

−∞
|ĥ(t)| dt <∞.

Proof. Using integration by parts (twice) and that h is zero outside some bounded region,

ĥ(t) =

∫ ∞

−∞
eitxh(x) dx =

[
h(x)eitx

it

]∞

−∞
− 1

it

∫ ∞

−∞
h′(x)eitx dx = − 1

t2

∫ ∞

−∞
h′′(x)eitx dx,

and so

|ĥ(t)| ≤ 1

t2

∫ ∞

−∞
|h′′(x)| dx ≤ c

t2
,

for some c > 0. Then ∫ ∞

−∞
|ĥ(t)| dt ≤

∫ ∞

−∞

c

t2
dt <∞.
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Theorem 3.15 (Parseval-Plancherel). Let µ be a probability measure on (R,B) with Fourier
transform ϕ. Then for any C2 test function

∫

R
h dµ =

1

2π

∫ ∞

−∞
ĥ(t)ϕ(t) dt.

Proof. The RHS makes sense since |ϕ(t)| ≤ 1 and by Lemma 3.14 |ĥ(t)| ≤ c/t2. We have

1

2π

∫ ∞

−∞
ĥ(t)ϕ(t) dt =

1

2π
lim
T→∞

∫ T

−T
ĥ(t)ϕ(t) dt

=
1

2π
lim
T→∞

∫ T

−T

(∫ ∞

−∞
e−itxh(x) dx

)(∫ ∞

−∞
eity dµ(y)

)
dt

Fubini
=

1

2π
lim
T→∞

∫ ∞

−∞

∫ ∞

−∞
h(x)

∫ T

−T
eit(y−x) dt dx dµ(y)

= lim
T→∞

∫ ∞

−∞

(
1

π

∫ ∞

−∞
h(x)

sin(T (x− y))

x− y dx

)
dµ(y).

We can use Fubini’s Theorem here since |h(x)eit(y−x)| = |h(x)| is integrable (since h is zero
outside a bounded region) with respect to µ× Leb× Leb on R×R× [−T, T ]. We now claim
that as T →∞,

1

π

∫ ∞

−∞
h(x)

sin(T (x− y))

x− y dx→ h(y)

for each y, and in a bounded way. If so we are done by DOM as we can integrate both parts
wth respect to µ and see that the limit is

∫
R h(y) dµ(y). So it suffices to prove this claim. We

split the integral into two:

1

π

∫ ∞

−∞
h(x)

sin(T (x− y))

x− y dx =
1

π

∫ y

−∞
[· · · ] dx+

1

π

∫ ∞

y
[· · · ] dx.

It suffices to prove that each term converges to h(y)
2 in a bounded way. We will only show it

for the second term (the first is similar).

1

π

∫ ∞

−∞
h(x)

sin(T (x− y))

x− y dx (integrate by parts)

=
1

π

([
h(x)

∫ x

y

sin(T (u− y))

u− y du

]x=∞

x=y

−
∫ ∞

y
h′(x)

∫ x

y

sin(T (u− y))

u− y du dx

)

v=T (u−y)
= − 1

π

∫ ∞

y
h′(x)

∫ T (x−y)

0

sin v

v
dv dx = − 1

π

∫ ∞

y
h′(x)ρ(T (x− y)) dx.

Since h(y) = −
∫∞
y h′(x) dx it suffices to prove that, as T →∞,

∫ ∞

y
h′(x)ρ(T (x− y)) dx→ π

2

∫ ∞

y
h′(x) dx,

in a bounded way.
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Convergence:
By Lemma 3.13, as T →∞,

ρ(T (x− y))→ π

2
,

for each x, and in a bounded way by c. Hence

h′(x)ρ(T (x− y))→ h′(x)
π

2
,

for each x and in a dominated way by c|h′(x)|. Since c|h′(x)| vanishes outside a bounded
region it is Lebesgue measurable. By applying DOM we obtain

∫ ∞

y
h′(x)ρ(T (x− y)) dx→ π

2

∫ ∞

y
h′(x) dx.

In a bounded way:

∣∣∣
∫ ∞

y
h′(x)ρ(T (x− y)) dx

∣∣ ≤ c
∫ ∞

−∞
|h′(x)| dx <∞.

Theorem 3.16 (Weak convergence = convergence of characteristic functions).

Let (Xn) and X be random variables with characteristic functions (ϕn) and ϕ. Then Xn
d→ X

if and only if ϕn(t)→ ϕ(t) for each t ∈ R.

Proof. Denote by (µn) and µ the laws of (Xn) and X.

(⇒) Suppose Xn
d→ X.

For each t, the function h(x) = eitx is continuous and bounded. Hence

ϕn(t) = E(eitXn) =

∫
h dµn

Thm 3.4→
∫
h dµ = E(eitX) = ϕ(t).

(⇐) Suppose ϕn(t)→ ϕ(t) as n→∞ for each t.
By Theorem 3.6 it suffices to check that

∫
h dµn →

∫
h dµ for every C2 test function h. In

turn, by Parseval-Plancherel it suffices to check that

∫ ∞

−∞
ĥ(t)ϕn(t) dt→

∫ ∞

−∞
ĥ(t)ϕ(t) dt. (2)

Since ϕn(t)→ ϕ(t), we have ĥ(t)ϕn(t)→ ĥ(t)ϕ(t) for each t.

Since |ĥ(t)| ≤ c/t2 by Lemma 3.14 and |ϕn(t)| ≤ 1 for all n and t we have

|ĥ(t)ϕn(t)| ≤ c/t2

for all t. Since c/t2 is integrable (with respect to the Lebesgue measure), (2) follows now from
DOM.

Summary
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Xn
d→ X

∫
h dµn →

∫
h dµ for C2 test h

∫
h dµn →

∫
h dµ for continuous and bounded h

∫
ĥϕn dt→

∫
ĥϕ dt for C2 test h

ϕn(t) → ϕ(t) for all t
Thm 3.4⇔

Thm 3.6⇔ Thm 3.15⇔

Thm 3.16⇒

Thm 3.16⇐

Theorem 3.17 (Distributions are determined by their characteristic functions). If random
variables X and Y have the same characteristic functions ϕX = ϕY then X and Y have the
same distribution.

Proof. Let Xn = X for all n. Then ϕXn = ϕX = ϕY . So ϕXn → ϕY and Xn
d→ Y by

Theorem 3.16.

Hence FX(t) = FXn(t) → FY (t) at the continuity points of FY . So FX(t) = FY (t) at the
continuity points.

If t is not a continuity point, it can be approximated by continuity points tn ↓ t (since there
are only countably many discontinuity points). By right continuity,

FX(t) = lim
n→∞

FX(tn) = lim
n→∞

FY (tn) = FY (t).

Example 3.18. Let X and Y be independent Cauchy random variables, i.e. both have
density (π(1 + x2))−1. What is the distribution of X + Y ?

We know the formula for the density of X + Y :

fX+Y (t) =

∫ ∞

−∞

1

π(1 + (t− v)2)
· 1

π(1 + v2)
dv.

However, it would be tricky to compute this. Instead, we can use characteristic functions:

ϕX(t) = ϕY (t) = e−|t| ⇒ ϕX+Y (t) = e−2|t| ⇒ ϕX+Y
2

(t) = e−|t|.

Hence X+Y
2 is Cauchy. Hence FX+Y (t) = FX+Y 2(t/2) and

fX+Y (t) =
1

2
fX+Y

2
(t/2) =

1

2π(1 + (t/2)2)
.

Example 3.19. Binomial distribution Bin(n, p) converges weakly to Poisson with mean 1.

• Compute the characteristic function of Bin(n, p): ϕn,p(t) = (1− p+ peit)n.

• Substitute p = 1/n: ϕn,1/n(t) =
(

1 + eit−t
n

)n
.

• Observe that ϕn,1/n(t)→ exp(eit − 1) as n→∞.

• Compute the characteristic function of Poisson(1): ϕ(t) = exp(eit − 1).
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Theorem 3.20 (Derivatives of characteristic functions).
Let X be a square-integrable random variable with characteristic function ϕ. Then

1. ϕ is twice differentiable and ϕ′′ is continuous at 0,

2. ϕ′(0) = iE(X),

3. ϕ′′(0) = −E(X2).

Proof.
Observe that

lim
h→0

eihX − 1

h
= (eihX)′

∣∣
h=0

= iX and
∣∣∣e
ihX − 1

h

∣∣∣ =
∣∣∣1
h

∫ hX

0
eis ds

∣∣∣ ≤ |X|.

Therefore we have

ϕ′(t) = lim
h→0

ϕ(t+ h)− ϕ(t)

h
= lim

h→0
E

(
ei(t+h)X − eitX

h

)

= lim
h→0

E
(
eitX

eihX − 1

h

)
DOM

= E(eitXiX),

since the convergence is dominated by |X| (which is integrable by assumption). Hence ϕ is
differentiable and ϕ′(0) = iE(X). Furthermore, we have

ϕ′′(t) = lim
h→0

ϕ′(t+ h)− ϕ′(t)
h

= lim
h→0

E

(
ei(t+h)XiX − eitXiX

h

)

= lim
h→0

E
(
iXeitX

eihX − 1

h

)
DOM

= E
(
iXeitX lim

h→0

eihX − 1

h

)

= −E(X2eitX),

since the convergence is dominated by X2. Hence ϕ is twice differentiable and

ϕ′′(0) = −E(X2).

The continuity of ϕ′′ at zero follows from

ϕ′′(t) = −E(X2eitX)
DOM→ −E(X2) = ϕ′′(0), as t→ 0.

Example 3.21.
If X is Cauchy then ϕ(t) = e−|t| which is not differentiable at zero. Why does this not
invalidate the theorem?

Lemma 3.22.
| log(1 + z)− z| ≤ |z|2, if z ∈ C, |z| ≤ 1/2.
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Proof. Denote by Γ the straight path from 0 to z. Then

| log(1 + z)− z| =
∣∣∣
∫

Γ

(
1

1 + w
− 1

)
dw
∣∣∣ ≤

∫

Γ

∣∣∣ w

1 + w

∣∣∣ dw.

Using |a+ b| ≥
∣∣|a| − |b|

∣∣ (reverse triangle inequality), and that |z| ≤ 1/2, we have

| log(1 + z)− z| ≤ 2

∫

Γ
|w| dw = 2

∫ |z|

0
u du = |z|2.

Theorem 3.23 (Central Limit Theorem).
Let (Xi)i∈N be a sequence of i.i.d. random variables in L2 with mean EX1 = µ and variance
VarX1 = σ2. Set Sn = X1 + · · ·+Xn. Then, as n→∞,

Sn − nµ
σ
√
n

d−→ N(0, 1).

Proof. Set Y = (X1 − µ)/σ so that E[Y ] = 0 and Var[Y ] = 1. Let ϕY and ϕ be the
characteristic functions of Y and X1, respectively. By Theorem 3.11,

ϕ(t) = eitµϕY (σt).

Let ϕn denote the characteristic function of (Sn − nµ)/σ
√
n. Again by Theorem 3.11,

ϕn(t) = e−it
√
nµ/σϕ(t/

√
nσ)n = ϕY (t/

√
n)n. (3)

Since ϕ′′ is twice differentiable (Theorem 3.20), we have by Taylor’s Theorem,

ϕY (s) = ϕY (0) + sϕ′Y (0) +
s2

2
ϕ′′Y (0) + o(s2),

as s→ 0. Using Theorem 3.20, this is

ϕY (s) = 1− s2

2
+ o(s2),

which we plug into (3) by setting s = t/
√
n to give

ϕn(t) =
(

1− t2

2n
+ o
( t2
n

))n
,

as n→∞. By Lemma 3.22 (which we can apply for n sufficiently large), for each t,

n log
(

1− t2

2n
+ o
( t2
n

))
= n

(
− t2

2n
+ o
( t2
n

))
→ − t

2

2
,

as n→∞, which gives that, for all t,

ϕn(t)→ e−
t2

2 .

However, e−
t2

2 is the characteristic function of the N(0, 1) distribution and so the proof is
complete by Theorem 3.16.

Remark 3.24.
The Central Limit Theorem implies the Weak Law of Large Numbers Sn/n → µ, but there
is a much simpler proof (see homework).
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4 Martingales

4.1 Conditional expectation

Example 4.1. Imagine we roll a fair 6-sided die. Let (Ω,Σ,P) be the corresponding prob-
ability space, that is, Ω = {1, 2, 3, 4, 5, 6}. Σ =set of all subsets of Ω, and P({i}) = 1/6 for
i ∈ {1, . . . , 6}. Let X : Ω → R be the Σ-measurable random variable satisfying X(i) = i for
i ∈ {1, . . . , 6}. Consider another σ-algebra F = {∅, {1, 2, 3}, {4, 5, 6},Ω}. Note that X is not
F-measurable, e.g. X−1({1}) = {1} /∈ F .
Question: What is the best model for X in the F world? (i.e. among all F-measurable
functions)
Let Y be a random variable with Y (1) = Y (2) = Y (3) = 2 and Y (4) = Y (5) = Y (6) = 5
(average over the values X takes in each set of F). Note that Y is F-measurable.
Set A = {1, 2, 3} and observe that

E[X1{A}] =

∫

A
XdP =

(1

6

)
(1 + 2 + 3) = 1,

E[Y 1{A}] =

∫

A
Y dP =

(1

6

)
(2 + 2 + 2) = 1.

Theorem 4.2 (Definition, existence and uniqueness of conditional expectation).
Let (Ω,Σ,P) be a probability space, and X : Ω→ R be an integrable random variable. Let F
be a sub-σ-algebra of Σ. Then there exists a random variable Y such that

1. Y is F-measurable,

2. Y is integrable,

3.
∫
AXdP =

∫
A Y dP for all A ∈ F .

If Ỹ is another random variable with these properties then Ỹ = Y almost surely. Any random
variable with the above three properties is called (a version of) the conditional expectation
E[X|F ] of X given F .

Remark 4.3. Suppose F is the trivial σ-algebra, F = {∅,Ω}. Then the conditional expec-
tation of an integrable random variable X with respect to F is the usual expectation. Indeed,
integrability of Y follows from the integrability of X, and Y is F-measurable since

Y −1(x) =

{
Ω, if x = E[X],

∅, otherwise.

Condition 3. is satisfied since:

∫

∅
XdP =

∫

∅
E[X]dP = 0,

∫

Ω
XdP = E[X] = E[X]P(Ω) =

∫

Ω
E[X]dP.

Recall the following theorem:
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Theorem 4.4 (Radon-Nikodým derivative).
Let (Ω,Σ,P) be a probability space and suppose that Q is a finite measure on (Ω,Σ) which is
absolutely continuous with respect to P (for any S ∈ Σ, P(S) = 0 implies Q(S) = 0). Then
there exists an integrable random variable X on (Ω,Σ,P) such that

Q(S) =

∫

S
XdP = E[X1{S}] ∀S ∈ Σ.

The random variable X is called a version of the Radon-Nikodým derivative of Q relative to
P on (Ω,Σ).

Proof of Theorem 4.2.
Decompose X into X = X+ − X− where X+ = max{X, 0} and X− = max{−X, 0}. Note
that |X| = X+ +X− and thus both X+ and X− are integrable. For A ∈ F define

ν±(A) :=

∫

A
X±dP.

By Fubini, for any non-negative random variable Z,

E(Z) =

∫
Z(ω) dP =

∫ ∫ ∞

0
1{x≤Z(ω)} dx dP =

∫ ∞

0

∫
1{x≤Z(ω)} dP dx =

∫ ∞

0
P(X ≥ x) dP.

Next, we claim that ν+ and ν− are both absolutely continuous with respect to P on (Ω,F ,P).

Indeed this is true since, by Fubini (using the fact that X± ≥ 0),

E[X±1{A}] =

∫ ∞

0
P(X±1{A} ≥ y)dy =

∫ ∞

0
P(X± ≥ y,A)dy ≤

∫ ∞

0
P(A)dy = 0,

if P(A) = 0. Furthermore ν+ and ν− are finite measures on F (since E|X±| <∞) and thus we
can apply the Radon-Nikodým Theorem to deduce the existence of F-measurable integrable
random variables Y± such that ∫

A
Y±dP = ν±(A),

for all A ∈ F . Furthermore since
∫

A
Y±dP = ν±(A) =

∫

A
X±dP

for all A ∈ F , we see that Y+ and Y− satisfy conditions 1, 2 and 3 of Theorem 4.2 for X+ and
X− respectively. Set Y = Y+−Y−. Then Y is integrable as E|Y | = EY+ +EY− <∞ and also

∫

A
Y dP =

∫

A
(Y+ − Y−)dP =

∫

A
(X+ −X−)dP =

∫

A
XdP.

To complete the proof of existence it remains to show that Y is F-measurable. However it is
a standard result that the sum of two measurable functions is measurable. Indeed

Y+(ω)− Y−(ω) > c ⇐⇒ ∃q ∈ Q : Y−(ω) + c < q < Y+(ω),
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and thus

{ω : Y+(ω)− Y−(ω) > c} =
⋃

q∈Q
({Y+(ω) > q} ∩ {Y−(ω) < q − c}) ∈ F

since F is closed under countable unions. Let C be the class of intervals of the form (c,∞)
for c ∈ R. Note that σ(C) = B. We have just shown that Y −1 : C → F . Let E be the class
of elements B ∈ B such that Y −1(B) ∈ F . We want to show that B ⊆ E . However, E is a
σ-algebra (check!) and by definiton C ⊆ E and thus σ(C) ⊆ E , i.e. B ⊆ E .

To show uniqueness, suppose Ỹ also satisfies the three conditions. We want to show that
P(Y 6= Ỹ ) = 0. Suppose this is not the case, i.e. P (Y 6= Ỹ ) > 0. We have

{Y 6= Ỹ } =
⋃

k∈N
{Y − Ỹ > 1/k} ∪

⋃

k∈N
{Ỹ − Y > 1/k},

and at least one of these events has positive measure. Suppose P(A) > 0 whereA = {Y − Ỹ > 1/n}.
Then A ∈ F since Y and Ỹ are both F-measurable. We have

0 =

∫

A
(X −X)dP =

∫

A
(Y − Ỹ )dP >

∫

A

1

n
dP =

1

n
P(A) > 0.

This is a contradiction which completes the proof.

Theorem 4.5 (Basic properties of conditional expectation).
Let (Ω,Σ,P) be a probability space and F a sub-σ-algebra of Σ. We assume all random
variables are integrable.

(a) E(E[X|F ]) = EX,

(b) If X is F-measurable then E[X|F ] = X almost surely,

(c) Linearity: E[a1X1 + a2X2|F ] = a1E[X1|F ] + a2E[X2|F ] almost surely,

(d) Positivity: If X ≥ 0 almost surely then E[X|F ] ≥ 0 almost surely,

(e) Conditional MON: If 0 ≤ Xn ↑ X almost surely, then E[Xn|F ] ↑ E[X|F ] almost surely,

(f) Taking out what is known: If Z is F-measurable and bounded then E[ZX|F ] = ZE[X|F ]
almost surely,

(g) Independence: If X is independent of F then E[X|F ] = EX almost surely,

(h) Tower property: If G is a sub-σ-algebra of F then E[E[X|F ]|G] = E[X|G] almost surely,

(i) Conditional Jensen: If φ : R → R is convex and E|φ(X)| < ∞ then E[φ(X)|F ] ≥
φ(E[X|F ]) almost surely.

Proof.

(a) E(E[X|F ]) =
∫

Ω E[X|F ]dP =
∫

ΩXdP = EX by part 3 of the definition setting A = Ω.

(b) X satisfies 1, 2 and 3 of the definition.
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(c) This is obvious once we clarify the meaning: If Y1 is a version of E[X1|F ] and Y2 is a version
of E[X2|F ] then a1Y1 + a2Y2 is a version of E[a1X1 + a2X2|F ]. Indeed integrability can
be shown using triangle inequality and linearity of expectation, F-measurablity follows
as sums of F-measurable functions are F-measurable and condition 3 follows by linearity
of expectation.

(d) Let Y = E[X|F ] and suppose P(Y < 0) > 0. Then there exists n ∈ N such that
P(Y < −1/n) > 0. Set A = {Y < −1/n}, then A ∈ F and P(A) > 0. Since X ≥ 0 a.s.
we have that E[X1{A}] ≥ 0 but also

E[X1{A}] = E[Y 1{A}] < −
1

n
P(A) < 0,

which is a contradiction.

(e) Denote Yn = E[Xn|F ] By (d) 0 ≤ Yn ↑. Denote Y = lim inf Yn. Then Y is F-measurable
as it is the lim inf of F-measurable functions. Y is also integrable (by Fatou, for example).
For A ∈ F ,

∫

A
Y dP (MON)

= lim
n→∞

∫

A
YndP = lim

n→∞

∫

A
XndP (MON)

=

∫

A
XdP.

Thus Y = E[X|F ] almost surely.

(f) We first show this is true for Z an indicator, Z = 1{B} for B ∈ F . For each A ∈ F , we
have ∫

A
ZE[X|F ]dP =

∫

A∩B
E[X|F ]dP =

∫

A∩B
XdP =

∫

A
ZXdP.

We can extend the result to simple functions by linearity. We can then extend to positive
functions using conditional MON. Finally we use linearity to extend to all functions.

(g) Again we start by showing the result for X = 1{B} for B independent of F and then use
standard machinery. For A ∈ F , we have

∫

A
XdP = P (A ∩B) = P(A)P(B) = P(A)E[X] =

∫

A
E[X]dP.

(h) E[X|G] is G-measurable and integrable by definition, so it remains to show that for each
B ∈ G, ∫

B
E[X|F ]dP =

∫

B
E[X|G]dP.

But B ∈ F and so both integrals are equal to
∫
BXdP.

(i) We omit the proof.

Example 4.6.

(1) Let (Xn)n∈N be independent, identically distributed Bernoulli(p) random variables (so
that P(X1 = 1) = p = 1 − P(X1 = 0)) and set Sn = X1 + · · · + Xn. Let m < n and
σm = σ(X1, . . . , Xm). Then

E[Sn|σm]
(c)
= E[X1+· · ·+Xm|σm]+E[Xm+1+· · ·+Xn|σm]

(b)+(g)
= X1+· · ·+Xm+(n−m)p.
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(2) Fix 0 < p1 6= p2 < 1 and let X be the random variable with

P(X = p1) = q = 1− P(X = p2).

Now let Y be Bernoulli(X). What is E[Y |σ(X)]? Problem: Y is not independent of
X. Let Y1 be Bernoulli(p1) and Y2 be Bernoulli(p2) independent of X so that Y =
Y11{X=p1} + Y21{X=p2}. We have

E[Y |σ(X)] = E[Y11{X=p1} + Y21{X=p2}|σ(X)]

(c)
= E[Y11{X=p1}|σ(X)] + E[Y21{X=p2}|σ(X)]

(f)
= 1{X=p1}E[Y1|σ(X)] + 1{X=p2}E[Y2|σ(X)]

(g)
= 1{X=p1}E[Y1] + 1{X=p2}E[Y2]

= p11{X=p1} + p21{X=p2}

= X.

(3) Galton-Watson Process
Consider a stochastic process which models the number of individuals in a population.
Every individual alive at time n has a random number of children independently of each
other and distributed according to an offspring distribution which we denote by the
random variable N . The parent individual then dies. Suppose that at time 0 there is just
one individual in the population. Let Zn denote the number of individuals in generation
n, so that Z0 = 1 and suppose that N has finite mean.

Question: What is E[Zn|σ(Zn−1)]? Intuitively it should be E[N ]Zn−1. We prove this
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rigorously. Let {N (j)
i }i,j∈N be iid copies of N . We have

E[Zn|σ(Zn−1)] = E
[ ∞∑

i=0

Zn1{Zn−1=i}|σ(Zn−1)
]

= E
[

lim
M→∞

M∑

i=0

Zn1{Zn−1=i}|σ(Zn−1)
]

(e)
= lim

M→∞
E
[ M∑

i=0

Zn1{Zn−1=i}|σ(Zn−1)
]

(c)
= lim

M→∞

M∑

i=0

E[Zn1{Zn−1=i}|σ(Zn−1)]

= lim
M→∞

M∑

i=0

E[(N
(n−1)
1 + · · ·+N

(n−1)
i )1{Zn−1=i}|σ(Zn−1)]

(f)
= lim

M→∞

M∑

i=0

1{Zn−1=i}E[(N
(n−1)
1 + · · ·+N

(n−1)
i )|σ(Zn−1)]

(g)
= lim

M→∞

M∑

i=0

1{Zn−1=i}E[N
(n−1)
1 + · · ·+N

(n−1)
i ]

= lim
M→∞

M∑

i=0

1{Zn−1=i}iE[N ]

= lim
M→∞

E[N ]
M∑

i=0

i1{Zn−1=i}

= lim
M→∞

E[N ]Zn−11{Zn−1≤M}

= E[N ]Zn−1.

4.2 Martingales

Definition 4.7. Given a probability space (Ω,Σ,P), we define a filtration on (Ω,Σ,P) to be
an increasing family of sub-σ-algebras of Σ:

F1 ⊆ F2 ⊆ · · · ⊆ Σ.

Intuition: The information about ω in Ω available to us at time n consists of the values of
Z(ω) for all Fn-measurable functions Z.

Example 4.8. Given random variables (Xn), the filtration Fn = σ(X1, . . . , Xn) is called the
natural filtration of (Xn).

Definition 4.9. A sequence of random variables (Xn) is adapted to the filtration if Xn is
Fn-measurable for each n.
Intuition: If (Xn) is adapted, the value Xn(ω) is known to us at time n.
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Remark 4.10. (Xn) is always adapted to the natural filtration. Let Sn = X1 + · · · + Xn.
Then (Sn) is also adapted to the natural filtration.

Example 4.11 (Motivating the idea of a martingale).

(1) Let X0 = 0, X1 = ±1 with equal probability, and set X2 = 2X1 with probability 1/2,
otherwise X2 = 3X1. Is this game fair?
In some sense yes, since E[X2] = E[X1] = E[X0] = 0. On the other hand, it is not fair on
a day to day basis: if you win on day 1, you know you will win on day 2. A martingale
is a process which is fair from day to day.

(2) Let (εk)k∈N be iid random variables such that P(εk = 1) = P(εk = −1) = 1/2. Play a
game: at time k ∈ N, bet amount Yk that εk = 1 (coin lands heads). The amount bet Yk
is a random variable and is allowed to depend on the history, i.e. on ε1, . . . , εk−1 but not
on εk, εk+1, . . .. At time k you win εkYk (which is a loss if εk = −1). Your total winnings
after n such rounds is

∑n
k=1 εkYk.

This game is fair: conditioned on your total winnings at time n− 1, your expected total
winnings at time n is what you had at time n− 1:

E
[ n∑

k=1

εkYk
∣∣σ(ε1, . . . , εn−1)

]
= E

[
εnYn +

n−1∑

k=1

εkYk
∣∣σ(ε1, . . . , εn−1)

]

= E[εnYn|σ(ε1, . . . , εn−1)] +

n−1∑

k=1

εkYk

= YnE[εn] +
n−1∑

k=1

εkYk

=

n−1∑

k=1

εkYk.

Definition 4.12. Let (Xn)n≥0 be a sequence of random variables and (Fn)n≥0 a filtration
such that

(1) (Xn) is adapted to (Fn)n≥0,

(2) E|Xn| <∞ for each n.

Then

• (Xn) is a martingale with respect to (Fn) if E[Xn|Fn−1] = Xn−1 almost surely, for each
n ≥ 1.

• (Xn) is a submartingale with respect to (Fn) if E[Xn|Fn−1] ≥ Xn−1 almost surely, for
each n ≥ 1.

• (Xn) is a supermartingale with respect to (Fn) if E[Xn|Fn−1] ≤ Xn−1 almost surely, for
each n ≥ 1.

Remark 4.13. If (Xn) is a martingale (respectively, submartingale) then
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• E[Xn|Fm] = Xm (respectively, E[Xn|Fm] ≥ Xm) for all m < n.
This comes from repeated use of the tower property. For martingales (similar for sub-
martingales) we have

E[Xn|Fm] = E
[
E[Xn|Fn−1]

∣∣Fm
]

= E[Xn−1|Fm] = · · · = E[Xm+1|Fm] = Xm.

• E[Xn] = E[X0] for all n.
We know that E[Xn|F0] = X0 and taking expectations and using (a) we are done.

Example 4.14.

(1) The fair game in Example 4.11 (2) is a martingale (assuming the Yi are bounded) with
respect to the natural filtration of (εk). Taking Yk = 1 for all k we see that a simple
random walk is a martingale.

(2) Let (Ui) be independent integrable random variables with mean 0. Then Xn = U1 + · · ·+
Un is a martingale with respect to the natural filtration of (Ui):

E[Xn|σ(U1, . . . , Un−1)] = E[U1+· · ·+Un|σ(U1, . . . , Un−1)] = U1+· · ·+Un−1+E[Un] = Xn−1.

(3) Let (Vi) be non-negative independent random variables with mean 1. Then Xn =
∏n
i=1 Vi

is a martingale with respect to the natural filtration of (Vi):

E[Xn|σ(V1, . . . , Vn−1)] = E
[
Vn

n−1∏

i=1

Vi|σ(V1, . . . , Vn)
]

(“taking out known”) = E[Vn|σ(V1, . . . , Vn)]
n−1∏

i=1

Vi

(indep.) = E[Vn]
n−1∏

i=1

Vi = Xn−1.

The non-negativity is used to show integrability.

(4) Recall the Galton-Watson process. We have already shown that E[Zn|σ(Zn−1)] = E[N ]Zn−1.
Thus the process (Zn) is a martingale with respect to the natural filtration iff E[N ] = 1
(integrability is clear since the process is non-negative). The process Xn = Zn/(E[N ])n

is also a martingale (check!).

Definition 4.15. A map T : Ω→ {0}∪N∪{∞} is a stopping time with respect to a filtration
(Fn) if

{ω : T (ω) = n} ∈ Fn, ∀n ≤ ∞.
Intuition: Can judge if random time T equals n from the information you have by time n.

Remark 4.16. Equivalently, {ω : T (ω) ≤ n} ∈ Fn, ∀n ≤ ∞.
Proof of equivalence:

{ω : T (ω) ≤ n} =
⋃

m≤n
{ω : T (ω) = m}

and thus if {ω : T (ω) = m} ∈ Fm ⊆ Fn then {ω : T (ω) ≤ n} ∈ Fn. Also

{T = n} = {T ≤ n} ∩ {T ≤ n− 1}{

and thus if {T ≤ n} ∈ Fn then {T = n} ∈ Fn.
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Example 4.17.

(1) Suppose Fn is weather information up to time n and T is the first rainy day. Then T is
a stopping time. On the other hand if T is the last rainy day then T is not a stopping
time.

(2) Let (Xn) be a sequence adapted to (Fn) and T = min{n : Xn > 1}. This is a stopping
time:

{T = n} = {Xm ≤ 1 ∀m < n,Xn > 1} = {X1 ≤ 1} ∩ · · · ∩ {Xn−1 ≤ 1} ∩ {Xn > 1}

and note that since (Xn) is adapted we have {Xi ≤ 1} ∈ Fi ⊆ Fn and thus {T = n} ∈ Fn.
On the other hand the map T = max{n : Xn > 1} is not a stopping time since it could
be the case that, for example, Xn+1 is not Fn-measurable.

(3) Let (εn) be an iid sequence of random variables such that P(εn = 1) = P(εn = −1) = 1/2
and suppose (Fn) is the natural filtration. Let Sn = ε1 + · · · + εn (set S0 = 0) so that
(Sn) is a simple random walk on Z. Let T be the first time that Sn hits either level −a
or level b, for a, b > 0, i.e. T = min{n : Sn = −a or Sn = b}. Then T is a stopping time:

{T = n} = {−a < S1 < b} ∩ · · · ∩ {−a < Sn−1 < b} ∩ {Sn ∈ {−a, b}} ∈ Fn.

Let (Xn) be a process adapted to (Fn) and let T be an a.s. finite stopping time. We will
be interested in the random variable XT (= XT (ω)(ω)) and the process (Xn∧T )n≥0 called a
stopped process.

Example 4.18. Let (Sn) be a simple random walk on Z.

• If T = min{n : Sn = 3} then ST = 3.

n

Sn∧T

3

2

1

0

−1

−2

−3

• If T = min{n : Sn ∈ {−2, 2}} then (by symmetry) ST = 2 or −2 with equal probabil-
ity 1/2.

Theorem 4.19 (Stopped martingales are martingales).
If (Xn) is a martingale (respectively, submartingale) and T a stopping time, then (Xn∧T )
is a martingale (respectively, submartingale). In particular, E[Xn∧T ] = E[X0] (respectively,
E[Xn∧T ] ≥ E[X0]) for all n ∈ N.
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Proof. We can write Xn∧T as

Xn∧T =
n−1∑

i=1

1{T=i}Xi + 1{T≥n}Xn.

From this decomposition we see that Xn∧T is Fn-measurable: indeed, this follows from (Xn)
being adapted and T being a stopping time. Note that in fact 1{T≥n} is Fn−1-measurable
since

{T ≥ n} = {T ≤ n− 1}{ ∈ Fn−1.

Also, by the triangle inequality and the above decomposition (and linearity of expectation),
we have

E|Xn∧T | ≤ E
[ n−1∑

i=1

|Xi|+ |Xn|
]
<∞.

For the martingale case (submartingale argument is similar), the final condition to check is
that E[Xn∧T |Fn−1] = X(n−1)∧T almost surely. We have

E[Xn∧T |Fn−1] = E
[ n−1∑

i=1

1{T=i}Xi + 1{T≥n}Xn

∣∣Fn−1

]

(1{T=i}Xi is Fi-measurable) =

n−1∑

i=1

1{T=i}Xi + E[1{T≥n}Xn

∣∣Fn−1]

(“taking out known”) =
n−1∑

i=1

1{T=i}Xi + 1{T≥n}E[Xn|Fn−1]

=
n−1∑

i=1

1{T=i}Xi + 1{T≥n}Xn−1

=

n−2∑

i=1

1{T=i}Xi + (1{T=n−1} + 1{T≥n})Xn−1

=

n−2∑

i=1

1{T=i}Xi + 1{T≥n−1}Xn−1

= X(n−1)∧T .

Remark 4.20. As n→∞, n∧T → T almost surely (since T is a.s. finite) and so Xn∧T → XT

almost surely. Is it true that E[XT ] = limn→∞ E[Xn∧T ] = E[X0]?
No: consider the SRW on Z and T = min{n : Sn = 1} (it can be shown that such a T is
a.s. finite). Then E[ST ] = 1 6= 0 = E[S0]. We would like to know when we can say that
E[XT ] = E[X0].

Theorem 4.21 (Doob’s Optional Stopping/Sampling Theorem (OST)).
Let (Xn) be a martingale (respectively, submartingale) and T a stopping time. Then XT is
integrable and E[XT ] = E[X0] (respectively, E[XT ] ≥ E[X0]) in each of the following situa-
tions:

(i) T is bounded,
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(ii) T is a.s. finite and (Xn) is uniformly bounded (that is, ∃c > 0 : |Xn(ω)| < c∀n, ω),

(iii) E[T ] <∞ and for some c > 0, |Xn(ω)−Xn−1(ω)| ≤ c ∀n, ω.

Proof. For the case where (Xn) is a submartingale we know by Theorem 4.19 that (Xn∧T ) is
a submartingale, thus E[Xn∧T ] ≥ E[X0] for all n ∈ N.

(i) If T (ω) ≤ N ∀ω ∈ Ω, then E[XT ] = E[XN∧T ] ≥ E[X0]. Further, E|XT | = E|XN∧T | <∞
as (Xn∧T ) is integrable.

(ii) Integrability follows from uniform boundedness of (Xn):

|XT | ≤
∞∑

n=0

|Xn|1{T=n} ≤ c
∞∑

n=0

1{T=n} = c.

The Xn∧T are also uniformly bounded so by (DOM) E[XT ] = limn→∞ E[Xn∧T ] ≥ E[X0].

(iii) We have

|Xn∧T −X0| =
∣∣∣
n∧T∑

k=1

(Xk −Xk−1)
∣∣∣ ≤

n∧T∑

k=1

|Xk −Xk−1| ≤ c(n ∧ T ) ≤ cT.

By the triangle inequality, for all n,

|Xn∧T | ≤ |Xn∧T −X0|+ |X0| ≤ cT + |X0|,

and so, since ET < ∞ and X0 is integrable, we can apply (DOM) to deduce that
E[XT ] = limn→∞ E[Xn∧T ] ≥ E[X0]. To see integrability of XT , we write

|XT | − |X0| ≤ |XT −X0| ≤
T∑

k=1

|Xk −Xk−1| ≤ cT.

The argument is similar for the case of martingales.

Remark 4.22.

(1) For (ii) it suffices to have the weaker condition that (Xn∧T ) is uniformly bounded rather
than (Xn). Similarly in (iii) it suffices to have bounded increments for (Xn∧T ) instead of
(Xn).

(2) The simple random walk on Z (Sn) and stopping time T = min{n : Sn = 1} violate all
three conditions (T is a.s. finite but has infinite mean).

(3) If you play a fair game (martingale) then you cannot expect to win, even if you decide
to stop the game at some random time. However, you can sometimes beat the system if
you have an infinite amount of time or money.

Example 4.23.

(1) Let (Sn) be the simple random walk on Z.
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• What is the probability that it will reach level b > 0 before reaching level −a < 0?
Set T = min{n : Sn ∈ {−a, b}} and stop the martingale (Sn) at stopping time
T . Then (Sn∧T ) is uniformly bounded (by max{a, b}) so we can apply OST with
condition (ii) if we can show that T is almost surely finite. One way to show that T
is a.s. finite: for each n,

P(T =∞) ≤ P(no sequence of (a+ b) successive moves to the right up to time n(a+ b))

≤ P(≥ 1 left jump in (0, a+ b], . . . ,≥ 1 left jump in ((n− 1)(a+ b), n(a+ b)])

= (1− (1/2)a+b)n ≤ e−(1/2)a+b → 0,

as n→∞. Thus we can apply OST to deduce that

0 = E[S0] = E[ST ] = bP(ST = b)− aP(ST = −a) = bP(ST = b)− a(1− P(ST = b)),

and so we have P(ST = b) = a/(a+ b).

• How long do we have to wait until (Sn) hits one of the barriers? We can solve
this problem by using another martingale. Set Mn = S2

n − n. Then (Mn) is
clearly adapted to the natural filtration Fn = σ(X1, . . . , Xn) and is clearly inte-
grable (E|Mn| ≤ n2 + n). Furthermore,

E[Mn+1|Fn] = E[(Sn +Xn+1)2 − (n+ 1)|Fn]

= E[S2
n + 2Xn+1Sn +X2

n+1 − n− 1|Fn]

= S2
n + 2SnE[Xn+1] + E[X2

n+1]− n− 1

= S2
n − n = Mn.

Thus (Mn) is a martingale. We cannot direcly apply OST since the increments of
Mn are not bounded and Mn is not uniformly bounded. However,

0 = E[M0] = E[Mn∧T ] = E[S2
n∧T ]− E[n ∧ T ].

Thus E[n ∧ T ] = E[S2
n∧T ]. By MON, E[n ∧ T ] → E[T ] (T is a.s. finite). Also

S2
n∧T ≤ max{a2, b2}. So by DOM, E[S2

n∧T ]→ E[S2
T ]. Thus E[T ] = E[S2

T ]. However,

E[S2
T ] = a2 b

a+ b
+ b2

a

a+ b
=
ab(a+ b)

a+ b
= ab,

i.e. E[T ] = ab.

(2) We repeatedly roll a die and wait to see the sequence 456 or 666. How long do we expect
to have to wait in each case? Idea: construct a martingale!

• 666
Just before each roll of the die, a new gambler arrives and bets 1 that the next roll
will be a 6. If he loses he leaves the game forever. If he wins he receives 6 and bets
it all on the event that the next roll is a 6. Again, if he loses he leaves forever and
if he wins he receives 62 and bets it all on the next roll being a 6. If he wins he get
63 and regardless of the outcome of the roll then leaves.
Since this game is fair, we should think that the total investment minus total win-
nings (of all gamblers) at time n is a martingale.
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If we stop the game at time T when 666 first occurs, the total winnings will be
63 + 62 + 6 (the 63 is winnings for gambler who arrived at time T − 2, the 62 for
gambler who arrived at time T − 1 and 6 for gambler who arrived at time T ). The
total investment at time T is T (since 1 put into the system at each time step by
the new gambler at that time). Thus it seems like we can use the OST to show that
E[T ] = 63 + 62 + 6. We show this rigorously.
Let (Xn) denote the independent die rolls and (Fn) their natural filtration. The
total winnings at time n is

Wn =

n−2∑

i=1

631{Xi=6,Xi+1=6,Xi+2=6} + 621{Xn−1=6,Xn=6} + 61{Xn=6}.

The total investment at time n is n. Denote

Mn := Wn − n,

so that (Mn) is adapted and integrable and furthermore:

E[Mn+1|Fn] =
n−2∑

i=1

631{Xi=6,Xi+1=6,Xi+2=6} + E[631{Xn−1=6,Xn=6,Xn+1=6}|Fn]

+ E[621{Xn=6,Xn+1=6}|Fn] + E[61{Xn+1=6}|Fn]− (n+ 1)

=
n−2∑

i=1

631{Xi=6,Xi+1=6,Xi+2=6} + 631{Xn−1=6,Xn=6} ×
1

6

+ 621{Xn=6} ×
1

6
+ 1− n− 1

=

n−2∑

i=1

631{Xi=6,Xi+1=6,Xi+2=6} + 621{Xn−1=6,Xn=6} + 61{Xn=6} − n

= Mn.

Thus (Mn) is a martingale. We set

T = min{n : Xn−2 = 6, Xn−1 = 6, Xn = 6}.

This is clearly a stopping time and we claim it has finite mean. To see this note that
we can write

E[T ] =

∞∑

m=1

P(T ≥ m).

Set k = 3
⌊
m−1

3

⌋
. We also have

P(T ≥ m) = P(no 3 successive 6s up to time m− 1)

≤ P(no 3 6s at times {1, 2, 3}, . . . ,no 3 6s at times {k − 2, k − 1, k})

= (1− (1/6)3)

⌊
m−1

3

⌋
.

Thus

E[T ] ≤
∞∑

m=3

(1− (1/6)3)

⌊
m−1

3

⌋
<∞,
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as claimed. Thus by OST,

0 = E[M0] = E[MT ] = E[WT ]− E[T ].

But since E[WT ] = 63 + 62 + 6, we deduce that E[T ] = 63 + 62 + 6.
Alternatively, we can avoid using OST and argue as follows. For each n,

0 = E[M0] = E[Mn∧T ] = E[Wn∧T ]− E[n ∧ T ].

Thus E[n∧T ] = E[Wn∧T ]. By MON, E[n∧T ]→ E[T ] and since |Wn∧T | ≤ 63 +62 +6,
by DOM, E[Wn∧T ]→ E[WT ]. Thus E[T ] = E[WT ] = 63 + 62 + 6.

• 456 Exercise!
Show that E[T ] = 63 and thus that we expect to wait less time to see 456 compared
to 666.

This may seem counter-intuitive at first, but consider the following representation of the
problem:

∅ (4) (4, 5) (4, 5, 6)

∅ (6) (6, 6) (6, 6, 6)

1/6 1/6 1/6

1/6

1/6

1/6 1/6 1/6

5/6

5/6

4/6

4/6

From drawing the two chains, we see why 666 takes longer to occur on average.

4.3 Maximal inequalities

Reminder 4.24 (Markov’s/Chebyshev’s inequality).
For a non-negative random variable X, and c > 0,

P(X ≥ c) ≤ E[X]

c
.

Theorem 4.25 (Doob’s submartingale inequality).
Let (Xn) be a non-negative submartingale. Then, for each c > 0,

P
(

max
0≤k≤n

Xk ≥ c
)
≤ E[Xn]

c
.
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Remark 4.26. This is an extension of Markov’s inequality, exploiting the fact that the (Xn)
are growing in expectation.

Proof. Set S = min{k : Xk ≥ c} and T = n ∧ S. Then T is a stopping time:

{T = k} =

k−1⋂

i=1

{Xi < c} ∩ {Xk ≥ c} ∈ Fk, 0 ≤ k ≤ n− 1,

{T = n} =

n−1⋂

i=1

{Xi < c} ∈ Fn,

{T = k} = ∅ ∈ Fk, k > n.

We know T ≤ n and claim that E[XT ] ≤ E[Xn]. We have

E[XT ] = E
[ n∑

k=0

Xk1{T=k}

]
=

n∑

k=0

E[Xk1{T=k}]. (4)

Since (Xn) is a submartingale E[Xn|Fk] ≥ Xk almost surely. Since {T = k} ∈ Fk, and by the
definition of conditional expectation,

E[Xk1{T=k}] =

∫

{T=k}
XkdP ≤

∫

{T=k}
E[Xn|Fk]dP =

∫

{T=k}
XndP = E[Xn1{T=k}].

Plugging this into equation (4) we obtain

E[XT ] ≤
n∑

k=0

E[Xn1{T=k}] = E
[
Xn

n∑

k=0

1{T=k}

]
= E[Xn],

as claimed. Now, using the fact that Xn is non-negative,

E[Xn] ≥ E[XT ] = E[XS1{S≤n}] + E[Xn1{S>n}] ≥ cP(S ≤ n).

But {S ≤ n} = {max0≤k≤nXk ≥ c}, and so we have

cP
(

max
0≤k≤n

Xk ≥ c
)
≤ E[Xn],

completing the proof.

Theorem 4.27 (Kolmogorov’s inequality).
Let (Xn) be a sequence of independent random variables with E[X2

n] <∞ and E[Xn] = 0, for
all n. Then, for each c > 0,

P
(

max
1≤k≤n

∣∣∣
k∑

i=1

Xi

∣∣∣ ≥ c
)
≤
∑n

i=1 E[X2
i ]

c2
.

Proof. Set Sn = X1 + · · · + Xn so that (Sn) is a martingale with respect to the natural
filtration of (Xn). Then S2

n is integrable for each n since

E[S2
n] = E

[( n∑

i=1

Xi

)2]
= E

[ n∑

i=1

X2
i +
∑

i 6=j
XiXj

]
=

n∑

i−1

E[X2
i ]+
∑

i 6=j
E[Xi]E[Xj ] =

n∑

i=1

E[X2
i ] <∞.
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By conditional Jensen’s inequality with φ(x) = x2, we have

E[S2
n|Fn−1] ≥ (E[Sn|Fn−1])2 = S2

n−1,

and thus (S2
n) is a non-negative submartingale. We can thus apply Doob’s submartingale

inequality to (S2
n):

P
(

max
1≤k≤n

∣∣∣
k∑

i=1

Xi

∣∣∣ ≥ c
)

= P
(

max
1≤k≤n

( k∑

i=1

Xi

)2
≥ c2

)
≤ E[S2

n]

c2
=

∑n
i=1 E[X2

i ]

c2
.

Example 4.28 (Durrett).
Suppose (Xn) is a sequence of independent identically distributed random variables with zero
mean and Var(X1) < 1. Let Sn = X1 + · · ·+Xn and fix p > 1/2.
Claim: Sn/n

p → 0 almost surely, as n→∞.
Fix N ∈ N; we have by Kolmogorov’s inequality,

P
(

max
1≤k≤N

|Sk|
Np

> ε
)
≤ ε−2

N∑

i=1

E[X2
i ]

N2p
< ε−2N1−2p.

Since p > 1/2, we can choose α > 0 with α(2p− 1) > 1. Now let m = N1/α so that

P
(

max
1≤k≤mα

|Sk|
mαp

> ε
)
< ε−2mα(1−2p),

and so since α(1− 2p) < −1,

∞∑

m=1

P
(

max
1≤k≤mα

|Sk|
mαp

> ε
)
<∞.

By Borel-Cantelli 1, we therefore have

P
(

max
1≤k≤mα

|Sk|
mαp

> ε i.o.
)

= 0, ∀ε > 0,

and thus

max
1≤k≤mα

|Sk|
mαp

→ 0 almost surely as m→∞. (5)

We want to show |Sn|/np → 0 almost surely as n → ∞, and so set m = m(n) = n1/α and
note that (m− 1)α < n. Then

|Sn|
np
≤ max

1≤k≤n

|Sk|
np

= max
1≤k≤mα

|Sk|
np
≤ max

1≤k≤mα
|Sk|

(m− 1)αp
= max

1≤k≤mα
|Sk|
mαp

( m

m− 1

)αp
→ 0,

almost surely as n (and hence m) goes to ∞, since m
m−1 → 1.
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4.4 Strong Law of Large Numbers

Theorem 4.29 (Kolmogorov’s theorem).
Let (Xn) be independent random variables with mean 0 and

∑∞
n=1 E[X2

n] <∞. Then
∑∞

n=1Xn <∞
almost surely.

Proof. We need to show that P
(∑∞

i=1Xi <∞) = 1. It thus suffices to show that

P
(( n∑

i=1

Xi

)
n∈N is a Cauchy sequence

)
= 1

i.e. P
( ∞⋂

k=1

∞⋃

N=1

∞⋂

n=N+1

{∣∣
n∑

i=1

Xi −
N∑

i=1

Xi

∣∣ < 1/k
})

= 1

i.e. P
( ∞⋃

N=1

∞⋂

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ < 1/k
})

= 1 for each k

i.e. P
( ∞⋂

N=1

∞⋃

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
})

= 0 for each k.

We have

P
( ∞⋂

N=1

∞⋃

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
})
≤ lim

N→∞
P
( ∞⋃

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
})
. (6)

For M ≥ N , by Kolmogorov’s inequality

P
( M⋃

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
})

= P
(

max
N+1≤n≤M

∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
)
≤ k2

M∑

n=N+1

E[X2
n].

Hence, by MON for sets, we have

P
( ∞⋃

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
})

= lim
M→∞

P
( M⋃

n=N+1

{∣∣
n∑

i=N+1

Xi

∣∣ ≥ 1/k
})

≤ k2
∞∑

n=N+1

E[X2
n]→ 0 as N →∞,

since
∑∞

n=1 E[X2
n] <∞. Plugging this into (6) gives the result.

Example 4.30. Let (εn) be a sequence of independent identically distributed random vari-
ables with

P(εn = 1) = P(εn = −1) = 1/2.

Then
∞∑

n=1

E[(εn/n)2] =

∞∑

n=1

1

n2
<∞,

so by Kolmogorov’s theorem,
∑∞

n=1 εn/n <∞ almost surely. Note that this is therefore more
in common with the sum

∑∞
n=1(−1)n/n = − log 2 <∞ than with

∑∞
n=1 1/n =∞.
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Moreover,
∞∑

n=1

εn

n1/2+δ
<∞

almost surely for δ > 0. On the other hand (see problem sheet)

∞∑

n=1

εn√
n

=∞

almost surely.

Lemma 4.31 (Cesaro).
If an → a then

a1 + · · ·+ an
n

→ a.

Proof. Exercise in Analysis 1.

Lemma 4.32 (Kronecker).
If
∑∞

n=1
an
n <∞, then

a1 + · · ·+ an
n

→ 0.

Proof. Denote u0 = 0, un =
∑n

i=1
ai
i and u =

∑∞
i=1

ai
i . We have un → u. Observe that

an = n(un − un−1). We have

a1 + · · ·+ an
n

=
1

n
(u1 − u2 + 2(u2 − u1) + · · ·+ n(un − un−1))

=
1

n
(nun − u0 − u1 − · · · − un−1) = un −

u0 + u1 + · · ·+ un−1

n

Cesaro→ u− u = 0.

Remark 4.33. So far we have seen the proof of SLLN for 1/2-Bernoulli random variables
(lectures) and for bounded random variables (homework). Here we extend it to square-
integrable random variables, which includes Poisson, Exponential, Normal, etc. The case of
integrable but not square-integrable random variables remains open (e.g P(X > x) = x−3/2).

Theorem 4.34 (SLLN for square-integrable random variables).
Let (Xn) be independent identically distributed random variables with 0 mean and finite vari-
ance. Then

X1 + · · ·+Xn

n
→ 0,

almost surely as n→∞.

Proof. Set Yn = Xn/n. Then (Yn) is a sequence of independent random variables with 0
mean and

∞∑

n=1

E[Y 2
n ] = E[X2

1 ]
∞∑

n=1

1

n2
<∞.

Therefore by Kolmogorov’s theorem,
∑∞

n=1 Yn <∞ almost surely, i.e.
∑∞

n=1
Xn
n <∞ almost

surely. Now apply Kronecker’s lemma to complete the proof.
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Remark 4.35. This result can obviously be extended to iid square-integrable random vari-
ables with a finite, non-zero mean.

We are now going to see how we can prove the general SLLN for independent identically
distributed integrable random variables using Kolmogorov’s Theorem plus a truncation tech-
nique.

Lemma 4.36 (Kolmogorov’s truncation lemma).
Let (Xn) be iid integrable random variables with mean µ. Define

Yn =

{
Xn, if |Xn| ≤ n,

0, otherwise.

Then

(a) P(Xn = Yn eventually)
(

= P(∃N : ∀n ≥ N,Xn = Yn)
)

= 1,

(b) E[Yn]→ µ,

(c)
∑∞

n=1
Var(Yn)
n2 <∞.

Proof.

(a) P(Xn = Yn eventually) = P(|Xn| ≤ n eventually) = 1− P(|Xn| > n i.o.). Note that

∞∑

n=1

P(|Xn| > n) =
∞∑

n=1

P(|X1| > n) =
∞∑

n=1

E[1{|X1|>n}] = lim
M→∞

M∑

n=1

E[1{|X1|>n}]

= lim
M→∞

E
[ M∑

n=1

1{|X1|>n}
]
≤ lim

M→∞
E
[M∧|X1|∑

n=1

1
]

= lim
M→∞

E[M ∧ |X1|]

≤ E|X1| <∞.

Applying Borel-Cantelli 1 gives (a).

(b) E[Yn] = E[Yn1{|Xn|≤n}] + E[Yn1{|Xn|>n}] = E[X11{|X1|≤n}]. However, X11{|X1|≤n} → X1

and |X11{|X1|≤n}| ≤ |X1| so by DOM,

E[X11{|X1|≤n}]→ E[X1] = µ.

(c)

∞∑

n=1

E[Y 2
n ]

n2
=

∞∑

n=1

E[X2
n1{|Xn|≤n}]

n2
=

∞∑

n=1

E[X2
11{|X1|≤n}]

n2

MON
= E

[ ∞∑

n=1

X2
11{|X1|≤n}

n2

]
= E

[
X2

1

∑

n≥|X1|

1

n2

]
.
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If |X1| < 1,

E
[
X2

1

∑

n≥|X1|

1

n2

]
≤ E[|X1|2π2/6] <∞.

Observe that for m ≥ 1,

∞∑

n=m

1

n2
≤
∞∑

n=m

2

n(n+ 1)
= 2

∞∑

n=m

( 1

n
− 1

n+ 1

)
=

2

m
.

Thus if |X1| ≥ 1,

E
[
X2

1

∑

n≥|X1|

1

n2

]
≤ E

[
X2

1

2

|X1|
]

= 2E[|X1|] <∞.

We deduce that
∞∑

n=1

E[Y 2
n ]

n2
<∞.

By (b), there exists a c > 0 such that we have

∞∑

n=1

(E[Yn])2

n2
≤
∞∑

n=1

c

n2
<∞.

Using Var[Yn] = E[Y 2
n ]− (E[Yn])2 completes the proof.

Theorem 4.37 (Strong Law of Large Numbers).
Let (Xn) be iid integrable random variables with mean µ. Then

X1 + · · ·+Xn

n
→ µ a.s. as n→∞.

Proof. Define Yn as in Kolmogorov’s Truncation Lemma. By KTL(a) we know that Xn = Yn
eventually and so it suffices to prove that

Y1 + · · ·+ Yn
n

→ µ a.s. as n→∞.

By KTL(b), E[Yn]→ µ, so by Cesaro’s Lemma,

E[Y1] + · · ·+ E[Yn]

n
→ µ.

Note that we can write

Y1 + · · ·+ Yn
n

=
1

n

{
(Y1 − E[Y1]) + · · ·+ (Yn − E[Yn]) + E[Y1 + · · ·+ Yn]

}

=
1

n

n∑

i=1

(Yi − E[Yi]) +
E[Y1] + · · ·+ E[Yn]

n
.

Thus it suffices to show

1

n

n∑

i=1

(Yi − E[Yi])→ 0 a.s. as n→∞.
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Set Zn = Yn − E[Yn]. Then (Zn) are independent, zero-mean random variables with

∞∑

n=1

E[Z2
n]

n2
=
∞∑

n=1

Var [Yn]

n2
<∞

by KTL(c). So by Kolmogorov’s Theorem,

∞∑

n=1

Zn
n
<∞ a.s.

Thus by Kronecker,

1

n

n∑

i=1

(Yi − E[Yi]) =
1

n

n∑

i=1

Zi → 0 a.s.

4.5 Martingale Convergence Theorem

For a martingale (Xn) with X0 = 0, think of Xn −Xn−1 as your net winnings per unit stake
in game n in a series of fair games, played at times n = 1, 2, . . ..

Definition 4.38. A process (Cn) is previsible/predictable with respect to a filtration (Fn) if
Cn is Fn−1-measurable for each n ≥ 1. For a martingale (Xn) and a previsible process (Cn)
the process (Yn) defined as Y0 = 0 and for all n ∈ N,

Yn =

n∑

i=1

Ci(Xi −Xi−1)

is called the martingale transform of (Xn) by (Cn). It is denoted as ((C •X)n).

Remark 4.39. Since we can write any process (Xn) with X0 = 0 as

Xn =

n∑

i=1

1 · (Xi −Xi−1),

it corresponds to betting £1 at every step of the game. When (Xn) is a martingale, doing the
martingale transform corresponds to betting Cn at time n. You have to decide on the value
of Cn based on the history up to time n− 1 (hence the term previsible). Can we choose (Cn)
in such a way so that our expected total winnings is positive?. . .

Theorem 4.40 (You cannot beat the system).
If each Cn is bounded then ((C •X)n) is a martingale.

Proof. Yn :=
∑n

i=1Ci(Xi −Xi−1) is obviously Fn-measurable. It is integrable since each Cn
is bounded. Finally,

E[Yn|Fn−1] = Yn−1 + E[Cn(Xn −Xn−1)|Fn−1] = Yn−1 + Cn(E[Xn|Fn−1]−Xn−1) = Yn−1.
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b

a

(XN − a)−

Figure 1: There are 2 upcrossings of [a, b] shown.

Definition 4.41. Let (Xn) be a martingale, N ∈ N, a < b. The number UN [a, b] of upcross-
ings of [a, b] made by (Xn) up to time N is the largest integer k such that there are integers
0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N with Xsi < a and Xti > b for all 1 ≤ i ≤ k.

Recall the notation: f− = max{−f, 0}.

Lemma 4.42 (Doob’s Upcrossing Lemma).
Let (Xn) be a martingale, N ∈ N, a < b. Then

(b− a)E[UN [a, b]] ≤ E[(XN − a)−].

Proof. We shall use Theorem 4.40 for a suitably chosen previsible strategy. For n ≤ s1 we set
Cn = 0, for each i ≥ 1 and si+ 1 ≤ n ≤ ti set Cn = 1 and for each i ≥ 1 and ti+ 1 ≤ n ≤ si+1

set Cn = 0. This corresponds to the gambling strategy of waiting until X goes below level a
and then playing unit stakes until X gets above b and then stop playing (until X again goes
below a). Then (Cn) is previsible and bounded and so Yn := (C • X)n is a martingale by
Theorem 4.40. It follows that

0 = E[Y0] = E[YN ] =

N∑

i=1

Ci(Xi −Xi−1). (7)
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It is clear that for all k, Xtk −Xsk ≥ b− a. We decompose YN in the following way:

N∑

i=1

Ci(Xi −Xi−1) =

tUN [a,b]∑

i=1

Ci(Xi −Xi−1) +
N∑

i=tUN [a,b]+1

Ci(Xi −Xi−1)

=

UN [a,b]∑

j=1

tj∑

i=sj+1

Ci(Xi −Xi−1) +

N∑

i=sUN [a,b]+1

Ci(Xi −Xi−1)

=

UN [a,b]∑

j=1

(Xtj −Xsj ) + (XN −XsUN [a,b]
)1{sUN [a,b]+1≤N}

≥ (b− a)UN [a, b] + (XN −XsUN [a,b]
)1{sUN [a,b]+1≤N}

≥ (b− a)UN [a, b]− (XN − a)−.

Taking expectations and using (7) gives the result.

Theorem 4.43 (Martingale Convergence Theorem).
Let (Xn) be a martingale bounded in L1 (i.e. ∃c : E|Xn| ≤ c∀n). Then there exists an
almost-surely finite random variable X on the same probability space such that Xn → X
almost surely as n→∞.

Proof. Let a < b ∈ Q. Denote by U [a, b] = limN→∞ UN [a, b]. By Doob’s Upcrossing Lemma,
this random variable is almost-surely finite:

(b−a)E[U [a, b]]
MON

= lim
N→∞

(b−a)E[UN [a, b]] ≤ lim
N→∞

E[(XN−a)−] ≤ lim
N→∞

E[|XN |+|a|] ≤ c+|a|,

i.e. E[U [a, b]] <∞ and thus U [a, b] is almost-surely finite. Notice now that
{

lim inf
n→∞

Xn 6= lim sup
n→∞

Xn

}
=
⋃

a<b
a,b∈Q

{
lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

}
⊂
⋃

a<b
a,b∈Q

{U [a, b] =∞}.

But since each of the events {U [a, b] =∞} has probability zero, the probability of a countable
union of such events also has probability zero. Thus we obtain

lim inf
n→∞

Xn = lim sup
n→∞

Xn a.s.

Denote X = lim infn→∞Xn. It remains to show that X is almost-surely finite. This follows
easily by Fatou’s Lemma:

E|X| = E
[

lim inf
n→∞

|Xn|
]
≤ lim inf

n→∞
E|Xn| ≤ c.

Example 4.44.

(1) The simple symmetric random walk (Sn) is a martingale but does not converge. Indeed
(Sn) is not bounded in L1. On the other hand, the stopped random walk (stopped when
reaching level b or −a) does converge to a random variable with two values a and b
(depending on which level Sn hits first).
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(2) If (Xn) is a non-negative martingale then E|Xn| = E[Xn] = E[X0] so it is L1-bounded
and converges.

(3) Polya’s Urn: the proportion of black balls is a non-negative martingale and so it converges.
If we start with one black and one white ball, the limit is a uniform random variable. If
we start with b black balls and w white balls, the limit has a beta distribution. (Exercise:
show this! Hint: show that the probability that in n draws you pick m black balls and
n−m white balls in a certain order does not depend on that order).

(4) Galton-Watson process with offspring distribution N . Recall that Zn denotes the number
of individuals in generation n. What happens if E[N ] < 1? It turns out that the popula-
tion becomes extinct in finite time. What about if E[N ] = 1? Then (Zn) is a martingale.
If P(N = 1) = 1 then the process is deterministic – indeed Zn = 1 for all n. But if
P(N = 1) < 1, then (Zn) is a non-negative martingale and so by the MCT it converges
to some random variable Z. Note that since E[N ] = 1, it must be that P(N = 0) > 0:

1 = E[N ] ≥ E[N1{N=1}] + E[N1{N>1}] = P(N = 1) + E[N1{N>1}]

> P(N = 1) + P(N > 1) = P(N ≥ 1),

i.e. P(N ≥ 1) < 1 and so P(N = 0) > 0. It follows that if k 6= 0, then

P(Z1 = k|Z0 = k) ≤ P(Z1 6= 0|Z0 = k) = 1− P(Z1 = 0|Z0 = k) = 1− P(N = 0)k < 1.

Now since Zn is integer-valued,

P(Z = k) = P(Zn → k) = P(∃m : ∀n ≥ m,Zn = k) = P

( ∞⋃

m=1

{∀n ≥ m,Zn = k}
)
.

For k 6= 0, we have

P(∀n ≥ m,Zn = k) ≤ lim
M→∞

P(Zn = k ∀m ≤ n ≤M)

= lim
M→∞

P(Zn = k)P(Z1 = k|Z0 = k)M−m

= 0.

Since a countable union of measure 0 events has measure 0, it must be that Zn = 0
eventually (Z = 0 almost surely), i.e. the process becomes extinct in finite time. However
we have E[Zn] = E[Z0] = 1 but E[Z] = 0 so E[Zn] 9 E[Z]. The martingale (Zn) converges
almost surely to Z but not in L1. When can we say that a martingale converges almost
surely and in L1?

4.6 Uniform integrability

Lemma 4.45. Let X be an integrable random variable on (Ω,Σ,P). Then for each ε > 0,
there exists δ > 0 such that for A ∈ Σ, if P(A) < δ then E[|X|1{A}] < ε.
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Proof. Suppose the statement is false, so that there exists ε0 > 0 and a sequence (An) ∈ Σ,
such that P(An) < 2−n and E[|X|1{An}] ≥ ε0. Set A = lim supAn (= {An i.o.}) so that by
Borel-Cantelli 1, P(A) = 0. However, by reverse Fatou and using 1{lim supAn} = lim sup 1{An},

0 = E[|X|1{A}] ≥ lim supE[|X|1{An}] ≥ ε0,

a contradiction.

Definition 4.46. A sequence of random variables (Xn) is uniformly integrable (UI) if for
each ε > 0 there exists c > 0 such that

E[|Xn|1{|Xn|>c}] < ε ∀n.

We want to exclude the case that the expectation is strongly influenced by increasingly rare
but increasingly large values. For example, consider the sequence (Xn) such that

P(Xn = n) = 1− P(Xn = 0) = 1/n.

Then E[Xn] = 1 for all n and thus the sequence is integrable. But

E[|Xn|1{|Xn|>c}] = 1{c<n} → 1

as n→∞ for each c, thus (Xn) is not uniformly integrable.

Theorem 4.47. Let (Xn) be a sequence of random variables.

(1) If (Xn) is UI then it is bounded in L1.

(2) If (Xn) is dominated by an integrable random variable then it is UI.

(3) If (Xn) is bounded in Lp (for p > 1) then it is UI.

Proof.

(1) Take ε = 1 and c such that E[|Xn|1{|Xn|>c}] < 1. Then

E|Xn| = E[|Xn|1{|Xn|>c}] + E[|Xn|1{|Xn|≤c}] ≤ 1 + c.

(2) Suppose |Xn(ω)| ≤ Y (ω) for all n and ω with E[Y ] <∞. Fix ε > 0 and let δ be such that
for A ∈ Σ, if P(A) < δ then E[Y 1{A}] < ε (which exists by Lemma 4.45). By Markov’s
inequality, P(Y > c) < E[Y ]/c and thus we can find c > 0 so that P(Y > c) < δ. The
result follows since

E[|Xn|1{|Xn|>c}] ≤ E[Y 1{Y >c}] < ε.

(3) There exists K > 0 such that E[|Xn|p] < K for all n. We have

E[|Xn|1{|Xn|>c}] = E[|Xn|1−p|Xn|p1{|Xn|>c}] ≤ E[c1−p|Xn|p1{|Xn|>c}]
≤ c1−pE[|Xn|p] ≤ c1−pK → 0,

as c→∞.
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Definition 4.48. We say that a sequence of random variables (Xn) converges in L1 to X if
E[|Xn −X|]→ 0.

Theorem 4.49. Let (Xn) be a sequence of integrable random variables and let X be an
integrable random variable with Xn → X almost surely. Then Xn → X in L1 iff (Xn) is UI.

Proof omitted.

Theorem 4.50. Let X be an integrable random variable on (Ω,Σ,P). Then the class

{E[X|F ] : F is a sub-σ-algebra of Σ}

is UI.

Proof. Fix ε > 0 and choose δ as in Lemma 4.45 (using the fact that X is integrable). Let
λ < ∞ be such that E|X| ≤ λδ. For any sub-σ-algebra F we have, by conditional Jensen’s
inequality,

E
[
|E[X|F ]|

]
≤ E

[
E[|X||F ]

]
= E|X|.

Set Y = E[X|F ]. By Markov’s inequality,

P(|Y | ≥ λ) ≤ E|Y |
λ
≤ δ.

Again by Jensen’s inequality, we have

E[|Y |1{|Y |≥λ}] ≤ E
[
E[|X||F ]1{|Y |≥λ}

]

(defn of condx expectation) = E[|X|1{|Y |≥λ}]
≤ ε,

where the last step follows from Lemma 4.45 using the fact that {|Y | ≥ λ} ∈ F ⊆ Σ.

Definition 4.51. A sequence of random variables (Xn) is called a UI martingale if it is both
a martingale and UI.

Theorem 4.52. Let (Xn) be a martingale. The following are equivalent:

(i) (Xn) is a UI martingale.

(ii) Xn converges a.s. and in L1 to a limit X.

(iii) There exists an integrable random variable Z such that

Xn = E[Z|Fn] a.s. ∀n ≥ 0.

Proof.
(i) =⇒ (ii):
Since (Xn) is UI by Theorem 4.47(1), (Xn) is bounded in L1 and thus by MCT there exists
an a.s. finite random variable X such that Xn → X a.s. Thus, since (Xn) is UI, by Theorem
4.49 Xn → X in L1.
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(ii) =⇒ (iii):
Set Z = X. Then Z is integrable since

E|Z| = E|X| ≤ E|Xn −X|+ E|Xn| <∞,

for n sufficiently large. We now show that Xn = E[Z|Fn] a.s. For all m ≥ n, by the martingale
property for F ∈ Fn,

E[1{F}Xm] = E
[
E[1{F}Xm|Fn]

]
= E

[
1{F}E[Xm|Fn]

]
= E[1{F}Xn]. (8)

But we have by Jensen’s inequality

∣∣E[1{F}Xm]− E[1{F}X]
∣∣ ≤ E[1{F}|Xm −X|] ≤ E|Xm −X| → 0,

as m → ∞. Thus by (8) E[1{F}X] = E[1{F}Xn] and so Xn satisfies the three properties
in the definition of conditional expectation (it is Fn-measurable and integrable since it is a
martingale).

(iii) =⇒ (i):
Uniform integrability follows from Theorem 4.50.

Definition 4.53. A backwards martingale is a martingale indexed by the negative integers:
that is (Xn)n≤0 is adapted to (Fn)n≤0 and satisfies E|X0| <∞,

E[Xn+1|Fn] = Xn a.s. ∀n ≤ −1,

where (Fn)n≤0 is an increasing sequence of σ-algebras, · · · F−2 ⊆ F−1 ⊆ F0.

Because the σ-algebras decrease as n→ −∞, the convergence theorey for backward martin-
gales is particularly simple.

Lemma 4.54. Suppose (Xn)n≤0 is a backwards martingale with respect to a filtration (Fn)n≤0.
Then for all n ≤ 0,

E[X0|Fn] = Xn, a.s.

Proof. By the Tower property, since Fn ⊆ Fn+1 for all n ≤ 0, we have, for each n ≤ 0,

E[X0|Fn] = E
[
E[X0|F−1]

∣∣Fn
]

= E[X−1|Fn] = · · · = E[Xn+1|Fn] = Xn.

Theorem 4.55. Backwards martingales are UI.

Proof. Since X0 is integrable, we know by Theorem 4.50 that

{
E[X0|F ] : F is a sub-σ-algebra of Σ

}

is a UI class. The result follows by Lemma 4.54.
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Theorem 4.56 (Backwards MCT).
Let (Xn) be a backwards martingale. Then Xn converges a.s. and in L1 as n → −∞ to
X−∞ := E[X0|F−∞] where F−∞ =

⋂
n≤0Fn.

Proof. We adapt Doob’s Upcrossing Lemma to this setting. Choose a < b ∈ Q and for N ≤ 0,
let UN [a, b] be the number of upcrossings of [a, b] between time N and 0. For 0 ≤ k ≤ −N ,
set Gk = FN+k. Then Gk is an increasing filtration and (XN+k, 0 ≤ k ≤ −N) is a martingale
adapted to Gk and UN [a, b] is the number of upcrossings of [a, b] by (XN+k)k between times
0 and −N . Thus by Doob’s Upcrossing Lemma,

(b− a)E[UN [a, b]] ≤ E[(X0 − a)−]. (9)

Letting N → −∞ we have UN [a, b] increases to the total number of upcrossings of X from
a to b which by (9) is a.s. finite (using MON, see proof of MCT). We thus have (again by
similar arguments to the proof of MCT) that

Xn → X−∞ a.s. as n→ −∞,

for some random variable X−∞. We claim that X−∞ is F−∞-measurable. Indeed, since the
limit of (Xn) does not depend on any finite number of the (Xn), for every m ≤ 0, X−∞
is the limit of (Xm+n)n≤0. But each Xm+n is Fm-measurable since Fm+n ⊆ Fm for all
n ≤ 0. As the limit of Fm-measurable functions is also Fm-measurable we deduce that X−∞
is Fm-measurable. This is true for every m and hence X−∞ is F−∞-measurable.

Since X0 is bounded in L1 there exists c such that E|X0| < c. Using Xn = E[X0|Fn] we have,
by conditional Jensen’s inequality,

E|Xn| = E
[∣∣E[X0|Fn]

∣∣] ≤ E
[
E[|X0|

∣∣Fn]
]

= E|X0| < c,

i.e. Xn is bounded in L1 for all n ≤ 0.

Also, by Fatou’s Lemma,

E|X−∞| = E[lim inf
n→−∞

|Xn|] ≤ lim inf
n→∞

E|Xn| < c,

and so X−∞ is bounded in L1. Hence by the triangle inequality E|Xn −X−∞| < 2c.

By conditional Jensen’s inequality (and that X−∞ is Fn-measurable), we obtain

|Xn −X−∞| =
∣∣E[X0 −X−∞|Fn]

∣∣ ≤ E[|X0 −X−∞|
∣∣Fn],

but since |Xn −X−∞| is integrable, the class of random variables

(E[|X0 −X−∞|
∣∣Fn])n≤0

is UI. Hence also (|Xn −X−∞|)n≤0 is UI. Thus by Theorem 4.49 |Xn −X−∞| converges to 0
in L1 as n→ −∞, i.e. Xn converges to X−∞ in L1 as n→ −∞.

We are left to show that X−∞ = E[X0|F−∞] a.s. Since X−∞ is integrable and F−∞-
measurable, we thus need to show that for each A ∈ F−∞,

E[X01{A}] = E[X−∞1{A}].
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Since A ∈ Fn and Xn = E[X0|Fn] for all n ≤ 0,

E[X01{A}] = E[Xn1{A}],

and so

E[X01{A}] = lim
n→−∞

E[Xn1{A}]

= lim
n→−∞

E[(Xn −X−∞ +X−∞)1{A}]

= lim
n→−∞

E[(Xn −X−∞)1{A}] + E[X−∞1{A}]

= E[X−∞1{A}],

since E[(Xn − X−∞)1{A}] ≤ E[Xn − X−∞] ≤ E|Xn − X−∞| → 0 as n → −∞ by the L1

convergence result.

Theorem 4.57 (SLLN again).
Let (Xn) be iid integrable random variables with mean µ. Then

X1 + · · ·+Xn

n
→ µ,

almost surely and in L1.

Proof. Set Sn = X1 + · · ·+Xn and Fn = σ(Sn, Sn+1, . . .) = σ(Sn, Xn+1, . . .). We claim that

(Mn)n≤−1 :=

(
S−n
−n

)

n≤−1

is a (Gn)n≤−1 := (F−n)n≤−1 backwards martingale. Indeed, setting m = −n and using that
Xm is independent of Xm+1, Xm+2, . . ., we have

E[Mn+1|Gn] = E
[ Sm−1

m− 1
|Fm

]
= E

[Sm −Xm

m− 1
|Fm

]
=

Sm
m− 1

− E
[ Xm

m− 1
|Sm

]
.

By symmetry, E[Xi|Sm] = E[X1|Sm] for all 1 ≤ i ≤ m. Clearly

E[X1|Sm] + · · ·+ E[Xm|Sm] = E[Sm|Sm] = Sm,

and thus E[Xm|Sm] = Sm
m almost surely. Thus

E
[ Sm−1

m− 1
|Fm

]
=

Sm
m− 1

− Sm
m(m− 1)

=
Sm
m

= Mn,

almost surely. Applying the backwards MCT we deduce that Mn converges as n → −∞
almost surely and in L1 to a random variable Y = limm→∞

Sm
m . For all k,

Y = lim
m→∞

Xk+1 + · · ·+Xk+m

m
,

and hence Y is Tk = σ(Xk+1, . . .)-measurable for all k and hence
⋂
k Tk-measurable. By

Kolmogorov’s 0-1 law, we conclude that there exists c ∈ R such that P(Y = c) = 1. But

c = E[Y ] = E
[

lim
m→∞

Sm
m

]
= lim

m→∞
E
[Sm
m

]
= E[X1] = µ,

where the exchange of limit and expectation is by the L1 convergence result.
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