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Is randomness merely the human inability to recognise a pattern that may in fact 
exist? 
 
The three activities described show how order can be found in seemly random 
activities. The author has found that by using these activities on randomness, his 
students have developed a greater understanding of mathematical pattern and 
sequence. The teaching mathematical concepts in this way, engages and reinforces 
learning. It puts the ideas learnt into a setting and allows time for those ideas to be 
developed without any of the maths hang-ups which can sometimes occur in the 
classroom. By taking the maths beyond the classroom, we can more clearly illustrate 
the connections between the real world and what they are studying in school. In so 
doing students and teachers alike are enthused by the wealth of resources they have all 
around them in their own environments. 
 
Understanding if events are random or have some underlying structure is a fascinating 
area of mathematics, filled with great discoveries. To understand whether the present 
spread of swine flu throughout the world has some structure, or is just random pockets 
of disease, will save lives. If there is a pattern, then finding this could enable countries 
to stop its spread. In the 1920s mathematicians Kermack and McKendrick (1) 
pioneered work into understanding if a set of results was randomly generated or had 
some underlying pattern. One of the first uses of these techniques was to predict the 
spread of disease. 
As humans we find it very hard to deal with randomness. Psychologists call it 
Confirmation of Bias – with a new idea we attempt to prove it correct not wrong. 
For example given the data 2,4,6 and asked to guess the rule, most people would say 
the numbers go up in 2`s in this pattern and so the next would be 8 and 10. Yet 
equally well it could be that the pattern is increasing and so the next numbers are 7 
and 12. 
The Philosopher Francis Bacon said “the human understanding, once it has adopted 
an opinion, collects any instances that confirm it, and though the contrary instances 
may be more numerous, either does not notice them or else rejects them, in order that 
this opinion will remain unshaken” (2) 
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The concept of randomness is merely an attempt to characterise and distinguish types 
of sequences which confuse most people. It seems almost irrelevant to think about 
how it has been generated: flip of a coin, Geiger counter or practical joker. What 
matters is the effect on those who see it. 
Which is more random, a string of heads or tails, or alternating heads and tails? 
 
A game that was created by Walter Penney in 1969 (3), and is based on observing the 
occurrence of groups of heads and tails when repeatedly throwing a coin. 
Let your opponent (1st player) select any sequence of three coins and then, referring to 
the table below, you choose the relevant 2nd players choice next to it according to the 
chart. You then record a sequence of coin throws looking for one of your three coin 
sequences in the long chain of throws, such as HTHTHHHHTHHHTTTTHTHH. The 
winner is the person whose pattern appears first. 
 

  
 
At first glance you would think that the game is completely fair and not biased in any 
way, but in fact whatever sequence is selected by your opponent, you can always 
select a sequence which is more likely to appear first.  
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The maths of this order from apparent randomness can be seen by looking at the 
following three cases:   If your opponent chooses HHH, you then choose THH (as in the table). The 

one time in eight that the first three tosses of the coin is HHH, your opponent 
wins straight away. Yet in all other cases, if HHH is not in the first three tosses 
of the coin, then THH will occur first.   If your opponent chooses HHT, you then choose THH. The chance that HHT 
occurs first is conditional on either getting HHT or HHHT or HHHHT etc 
 
 
 
P( HHT before THH ) =   4
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  If your opponent chooses HTH, you then choose HHT 
let x=P(HHT comes before HTH).  
Ignore any leading Ts, and if we look to see what happens after the first H. 
Half the time the next throw is H, and then HHT is more likely to occur before 
HTH. 
Half the time the next throw is T, but if this is followed by another 
T, we are back to the beginning, hence you can write 

xx  2
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This gives, 2
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The reasoning behind the other cases follows in a similar way, by putting the first last. 
You can see from the table that your choice as the second player has a greater chance 
of appearing before your opponents in each case. This is why on average the second 
player should win over a group of say ten games. 
As well as looking at the theory, students should be encouraged to play the game. 
This practical aspect of mathematical development is often overlooked in education 
and often leads to a richer understanding of the subject. (4)  
A variation on Penney’s Game is The Humble Randomness Game and uses a pack 
of ordinary playing cards. The game follows the same format using Red and Black 
cards, instead of Heads and Tails. Yet due to the finite number of cards in a pack you 
can show that the second players chance of winning is greatly increased. 
 
When we know that the event is random how can we deal with choices? 
 
The Game of Googol was invented by John Fox in 1958 (5). This game is played by 
asking someone to take as many slips of paper as he pleases, and on each slip write a 
different positive number. The number can be as small or large as they please, hence 
the name googol.  
The slips are then turned face down and shuffled. You then, one at a time, turn the 
slips face up. The aim is to stop turning when you come to the number that you guess 
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to be the largest of the series. At no point can you go back and pick a previously 
turned slip. If at the end you have turn over all the slips, then you must select the final 
slip. 
You may think that the chance of finding the correct slip is N

1 , with N being the 
number of candidate slips. Yet this is far from true if you use a clever strategy.  
Regardless of the number of slips in the Game of Googol, the probability of picking 
the largest number, using a good strategy, is around 37% or e1   
 
The game has generated many interesting applications, such as how to optimise the 
selection of your BEST partner, how to select the BEST job applicant and which is 
the BEST motel to stay at. (6) 
A new application suggested by the author is How to Optimise Your BEST Buy in 
the Sales. The work of Psychologists and experimental economists has shown that 
people tend to stop searching too soon. Given you have 20 shops to visit how do you 
know when to make the purchase?  
With the Game of Googol strategy you would first visit 7 shops, making a note of the 
BEST bargain up to this point. Then use this “BEST bargain so far” as a reference for 
future shopping. Once you find a better BEST bargain than the one you found in the 
first 7 shops, you buy it. 
Here is how the theory works. Given N shops, select the BEST bargain in each shop 
you visit. Reject an initial number of r shops, and then choose the first BEST bargain 
which is better than all of the ones so far. 
BEST bargain is in one of N shops each with a chance N

1  
If BEST bargain is in the first r th shops, it is rejected, but if it is in the r+1th shop it is 
certain to be selected. 
If in the r+2 th shop, you cannot be sure if it is selected or not. It will only be chosen 
BEST, if best so far is in the initial r shops. 
Chance of this is 1r r  
If in the r+3 th shop, it will only be selected if best so far is in initial r, the chance of 
this is 2r r  and so on.  N
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rP )( P(K th bargain is the BEST).P(K th bargain is selected/it is the BEST) 
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Hence   r
N

N
rrP 1ln)(  

To find the maximum, differentiate and set equal to zero  
011ln1)(   rN
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In the short run, chance may seem to be volatile and unfair. Considering the 
misconceptions, inconsistencies, paradoxes and counter intuitive aspects of 
probability, it is not a surprise that as a civilization it has taken us a long time to 
develop some methods to deal with this. In antiquity, chance mechanisms, such as 
coins, dice and cards were used for decision making and there was a strong belief in 
the fact that God or Gods controlled the outcome. Even today, some people see 
chance outcomes as fate or destiny – “that which was meant to be” 
 
It is in this world that the magician lives and it is these beliefs that he uses to help to 
create illusions. One such magic trick is to claim to know the position of all the cards 
in a random pack. A famous version was created by Si Stebbins in 1898. Stebbins was 
an American vaudeville performer who developed a system which requires you to 
arrange the cards and suits in a sequence. Each subsequent card in the sequence has a 
value three more than the previous one and the suits rotate in Clubs, Hearts, Spades 
and Diamonds order (known as "CHaSeD" order). This arrangement allows the 
magician to know the identity of a chosen card by glimpsing the next card, or 
determining the exact position of any card in the pack by a mathematical calculation, 
although many other properties of the system are known and have been applied to 
different card tricks. 
 
3c 6h 9s Qd 2c 5h 8s Jd Ac 4h 7s 10d Kc 
3h 6s 9d Qc 2h 5s 8d Jc Ah 4s 7d 10c Kh 
3s 6d 9c Qh 2s 5d 8c Jh As 4d 7c 10h Ks 
3d 6c 9h Qs 2d 5c 8h Js Ad 4c 7h 10s Kd 
 
Given that  
1=Ace 
11=Jack 
12=Queen 
13=King 
 
 
Notice that these four groups of thirteen cards have a number of patterns. When you 
put these groups together as a pack you can then cut the deck as many times as you 
wish as the cyclic order is still persevered.  
Stebbins admitted, in one of his books, entitled Stebbins’ Legacy to Magicians (1935) 
to having developed the system from the Spanish magician Salem Cid. Yet if we look 
back in history there have been examples of similar tricks to this being used. 
Variations in which the cards progress by five, four or three have been seen as far 
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back as early 17th century in books by the Portuguese writer Gaspar Cardoso de 
Sequeira and the Spanish writer Minguet. (7) 
There are many developments you can make to this trick such as:  When a spectator chooses a card from the deck the magician can easily find 

their card by looking for a break in the pattern   Asking a spectator to cut the pack at any point and then by glancing at the 
bottom card you can know their chosen card. 

 
The problem with the Stebbins system from a mathematical point of view is that it is 
very predictable and does not look like a random collection of cards. 
 
1s, 4d, 3s,10c, 7c, 11s, 8s, 12c, 13d, 4c, 2d, 10h, 6s, 6d, 
9d, 5c, 5h, 4s, 13h, 2c, 9c, 4h, 1c, 6h, 7h, 10d, 8d, 2s, 7s,  
9s, 2h, 8h, 13c, 3d, 13s, 1h, 5s, 3h, 11d, 11h, 9h, 3c, 12s,  
11c, 10s, 5d, 6c, 8c, 1d, 7d, 12h, 12d 
 
s=spade (1) 
h=heart   (2) 
c=club     (3) 
d=diamond (4) 
1=Ace 
11=Jack 
12=Queen 
13=King 
 
This collection of cards is also in a sequence and by knowing the previous card you 
can determine the next just as with Stebbins arrangement. This sequence is better if 
you want to show the spectator the cards before you start the trick as it looks random. 
Good questions to ask students are:  
 
Can you see the pattern?  
How could you find a pattern, in such a seemly random collection of cards?  
 
This is an interesting question from the point of view of trying to discover hidden 
secrets in our world. When a mathematician first sets out to try and discover how 
something works they may start from just this point with a collection of data which 
they believe holds a pattern and yet looks completely random.  
 
To start to solve this problem a good thing to do is to look at small numbers in the 
pattern first. 
1s gives 4d 
2s gives 7s 
3s gives 10c 
Three times the card value plus one gives the next card value. Then can you find 
similar patterns with other suits? 
 
Once you have found the connections between the valves you will then need to 
discover what the pattern is between the suits.  
1s gives 4d  Spade gives Diamond 
1h gives 5s  Heart gives Spade 
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1c gives 6h  Club gives Heart 
 
Students enjoy discovering hidden patterns and this work develops naturally into why 
we need to find order in a seemly random world. 
 
Maurice Kendal points out that, man is in his childhood and is still afraid of the dark. 
Few prospects are darker than the future subject to blind chance! (8) 
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